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Abstract—In the compressive learning framework, one harshly com-
presses a whole training dataset into a single vector of generalized random
moments, the sketch, from which a learning task can subsequently be
performed. We prove that this loss of information can be leveraged
to design a differentially private mechanism, and study empirically the
privacy-utility tradeoff for the k-means clustering problem.

I. INTRODUCTION

The size and availability of datasets has increased in the last
decades, and calls for machine learning methods able to process such
collections efficiently, while protecting the privacy of data providers.
In the compressive learning framework [1], the dataset is compressed
into a vector of generalized random moments (the sketch), from which
the desired model can be learned with reduced resources. We propose
a mechanism based on this approach to learn from noisy dataset
moments with provable privacy guarantees (differential privacy).

II. DIFFERENTIALLY-PRIVATE SKETCHES

For a dataset X , {xi ∈ Rd}ni=1, the k-means problem consists
in finding k cluster centroids C , {cj ∈ Rd}kj=1 minimizing the
sum of squared errors (SSE):

C∗ = arg min
C

SSE(X , C) , arg min
C

∑
xi∈X

min
cj∈C
‖xi − cj‖22. (1)

In compressive learning [2], the dataset X is compressed into a sketch
z ∈ Cm of generalized moments as follows:

z , 1
n

∑n
i=1 zxi , with zxi , f(ΩTxi), (2)

where Ω = [ω1, . . . ,ωm] ∈ Rd×m is a matrix of random frequency
vectors drawn i.i.d. according to a well-chosen probability distri-
bution [3], and f : R 7→ C is a (pointwise) nonlinear signature
function, here assumed bounded and 2π−periodic. This nonlinearity
is typically the complex exponential fe : t 7→ exp(it) (i.e., zxi are
Random Fourier Features [4]), but we also consider one-bit universal
quantization fq : t 7→ sign(cos(t)) + i sign(sin(t)) [5], producing
quantized sketch contributions [6]. One heuristic for k-means consists
in finding k centroids whose sketch (computed using fe) best matches
the empirical sketch z [2].

Assuming the samples xi represent sensitive information (e.g.,
medical records), our aim is to guarantee “privacy” for the providers
of these data. Many definitions of privacy exist: for this work, we rely
on the standard and widely used differential privacy [7]. Informally,
it ensures that the output of a machine learning algorithm does not
depend too much on the presence of one individual in the dataset.

Definition 1 (Differential Privacy). Let ∼ be the neighboring relation
between datasets that differ by at most one record (X ∼ X ′ ⇔
(|X | = |X ′| and |(X ∪ X ′) \ (X ∩ X ′)| ≤ 2)). A randomized algo-
rithm F is said to achieve differential privacy with parameter ε > 0
(noted ε−DP) if for any measurable set S of the co-domain of F :

∀X ,X ′ s.t. X ∼ X ′ : P [F (X ) ∈ S] ≤ eεP
[
F (X ′) ∈ S

]
.

In order to satisfy this definition, we produce a scrambled sketch by
adding Laplace noise to the usual sketching process (2); the individual
sketches zxi are also subsampled to reduce the computational cost,

i.e. only some of the m entries are computed for each sample xi (cf.
Figure 2). Formally, the scrambled sketch sX using r ∈ J1,mK (i.e.,
r ∈ N : 1 ≤ r ≤ m) measurements per record, is defined as

sX , 1
αrn

∑n
i=1(zxi� bxi) + 1√

αrmn
ξ, (3)

where (bxi)1≤i≤n are uniformly drawn random binary masks with r
nonzero entries, ξj

iid∼ L(σξ/2) + iL(σξ/2) for all j ∈ J1,mK (with
L the Laplace distribution, i.e. ξ ∼ L(β) if pξ(ξ) = 1

2β
e−|ξ|/β),

αr , r/m is called the subsampling parameter, and � is the
pointwise multiplication. We can now state our main result: the
algorithm F (X ) = sX satisfies Definition 1.

Theorem 1. The local sketching mechanism (3)—with r measure-
ments per input sample and noise standard deviation σξ =

2cf
√
rm

√
nε

,
where cf = 2 maxt(|<f(t)|+ |=f(t)|) depends on the non-linearity
f (e.g., cfe = 2

√
2, cfq = 4)—achieves ε−DP.

Proof: The proof is a direct generalization of [8, Prop. 1], with a
general nonlinearity f(·) instead of the complex exponential exp(i·).

This means that the scrambled sketch sX can be publicly released
while protecting the ε-differential privacy of the records in X . In
a distributed context, all data provider compute scrambled sketches
that can later be further averaged, as depicted in the attack model
described in Figure 4. The result will still be private by composition
properties of differential privacy [9, Section 2.4.2].

III. EXPERIMENTS AND PERSPECTIVES

When the privacy guarantee strengthens (i.e. ε→ 0), the learning
performance is expected to degrade, as sX becomes a poorer estimate
for z. Figure 1 shows this privacy-utility tradeoff, for the k-means
scenario, using two different sketch sizes m = 10kd and m = 100kd
(experimental protocol described in the caption). Results are also
provided for the standard DPLloyd [10], and its variant with improved
initialization [11]. For a given sketch size, quantization degrades
only slightly the results, and subsampling with r = 1 measurements
(instead of m) has no significant impact for considered parameters
(n = 107).

Note that for a fixed sketch size m, and as shown in Figure 3, one
useful quantity to explain the clustering error (utility) is the signal-
to-noise ratio, whose definition (SNR) and expression for the non-
quantized case (SNRe) are

SNR ,
‖z‖2∑m

j=1 Var((sX )j)
and SNRe =

αrn‖z‖2

1− αr‖z‖2 + σ2
ξ

, (4)

where αr , r/m and z denotes the “true” sketch, i.e. the expectation
w.r.t. the true data distribution.

It is not yet known if this privacy-preserving sketching mechanism
is optimal (e.g., leading to the best privacy-utility tradeoff), or what
kind of mechanism (if it exists) might be so. We also leave for future
work the extension of private compressive learning for other tasks
than k-means.
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Fig. 1. Privacy-utility tradeoff (best viewed in colors). CKM stands for Compressive k-means (our approach). Improved initialization for DPLloyd refers
to the approach proposed in [11]. Parameters: k = d = 10, n = 107. Data drawn according to Gaussian mixtures with k gaussians of covariances Id, and
centers (µi)1≤i≤k ∼ N (0, (2.5k1/d)2Id). Medians over 50 trials, all methods have similar variances (hidden for readability) except for smaller values of ε.
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Fig. 2. Sketching with subsampling and additive noise on the sketch.

Fig. 3. (Left) Correlation between relative (w.r.t. k-means with 3 replicates)
SSE and SNR for different values of αr and σξ , using m = 10kd, f = fe.
Medians of 40 trials, blue area shows the standard deviation. (Right) SSE as
a function of SNR and m/kd, using n = 105, interpolated from a 12x12
grid, means of 40 trials, k = d = 10.
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Fig. 4. Our attack model: L devices should protect the privacy of their local
datasets (Xl)1≤l≤L while allowing an algorithm to learn a model from it
(in our case, the centroids C∗). The (public) matrix of frequencies Ω is used
for both “private sketching” and “compressive learning”. All devices publish
their scrambled sketches sXl

, which are combined into the global sketch sX .
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