

Introduction

Problem: approximating a kernel mean embedding

$$\mu := \mu(\rho) := \int_{\mathcal{X}} \phi(x) \, \mathrm{d} \rho(x)$$

where $\phi: \mathcal{X} \to \mathcal{H}$ is a feature map associated to a reproducing kernel Hilbert space \mathcal{H} with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ and norm $\|\cdot\|$.

Main assumption: there exists $K < \infty$ s.t. $\sup_{x \in Y} \|\phi(x)\| \leq K$.

Existing approaches

- Empirical estimator: $\hat{\mu} := \mu(\hat{\rho}_n) = \frac{1}{n} \sum_{i=1}^n \phi(x_i).$
 - Rate: $\|\mu \hat{\mu}\| = O(n^{-1/2})$
 - Time complexity: O(n)
 - Space complexity: O(nd)
- Complexity of MMD computation: $O(n^2)$
- **Sampling:** Random features [1], DPPs [2] (no practical algorithm).
- Incoherence-based selection [3] (limited guarantees), Herding [4].
- Estimators based on Stein's effect. [5] Improves constants but not the rate.

Problem statement

Design a new estimator $\hat{\mu}_m$ computed from *m* samples which:

- can be computed more efficiently than $\hat{\mu}$;
- 2. preserves the statistical accuracy of $\hat{\mu}$.

Applications

• Quadratures in RKHS: The quantity $\left\|\mu - \sum_{j=1}^{m} w_j \phi(x_j)\right\|$ corresponds to the worst-case error (for $f \in \mathcal{H}$) of the approximation

$$\int f(x) \,\mathrm{d}\rho(x) \approx \sum_{j=1}^m w_j f(x_j).$$

Approximate metrics between distributions: $\mathsf{MMD}(\rho_1, \rho_2) := \|\mu(\rho_1) - \mu(\rho_2)\| \approx \|\hat{\mu}_m(\rho_1) - \hat{\mu}_m(\rho_2)\|.$

Nyström Kernel Mean Embeddings

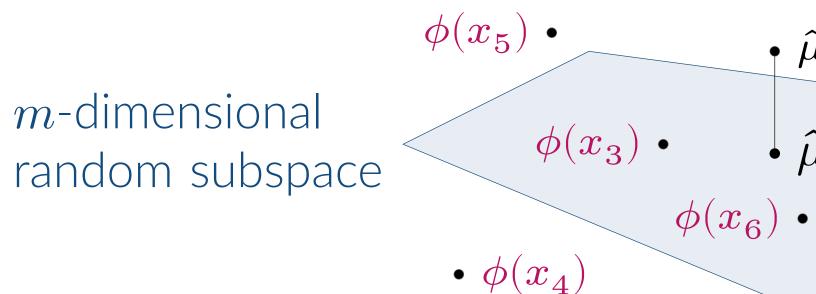
Antoine Chatalic¹

Nicolas Schreuder¹

¹ DIBRIS and MaLGA, Università di Genova,

² Inria, École normale supérieure, PSL research university

Proposed Method



project $\hat{\mu}$ on the low-dimensional subspace \mathcal{H}_m := Idea: $\operatorname{span}\left\{\phi(\tilde{X}_1),...,\phi(\tilde{X}_m)\right\} \text{ where the } (\tilde{X}_i)_{1 \leq i \leq m} \text{ are drawn from the dataset.}$ $\hat{\mu}_m := P_m \hat{\mu} = \sum_{1 \leq j \leq m} w_j \phi(\tilde{X}_j)$

with $m \ll n$ and P_m the projection on \mathcal{H}_m .

The weights $(w_j)_{1 \le j \le m}$ can be computed in close

Complexities: time $\Theta(nmd + m^3)$, space $\Theta(md)$.

How small can m be chosen to get the same statistical accuracy as $\hat{\mu}$?

Theoretical Results

We denote:

- $C = \int \phi(x) \otimes \phi(x) d\rho(x)$ the covariance operator.
- $\mathcal{N}(\lambda) := \operatorname{tr}(C(C + \lambda I)^{-1})$ the effective dimension for any $\lambda > 0$.

Theorem: Main result

Assume data points x_1, \ldots, x_n drawn i.i.d. from the probability distribution ρ , and $m \leq n$ sub-samples $\tilde{x}_1, \ldots, \tilde{x}_m$ drawn uniformly with replacement from $\{x_1 \dots, x_n\}$. Then, it holds with probability $\geq 1 - \delta$ that

$$\|\mu - \hat{\mu}_m\| \leq \frac{c_1}{\sqrt{n}} + \frac{c_2}{m} + \frac{c_3\sqrt{\log(m/\delta)}}{m} \sqrt{\frac{c_1}{m}} + \frac{c_2}{m} + \frac{c_3\sqrt{\log(m/\delta)}}{m} \sqrt{\frac{c_1}{m}} + \frac{c_3\sqrt{\log(m/\delta)}}{m} \sqrt{\frac{c_1}{m}} + \frac{c_2}{m} + \frac{c_3\sqrt{\log(m/\delta)}}{m} \sqrt{\frac{c_1}{m}} \sqrt{\frac{c_1}{m}} \sqrt{\frac{c_2}{m}} \sqrt{\frac{c_1}{m}} \sqrt{\frac{c_2}{m}} \sqrt{\frac{c_2}{m}} \sqrt{\frac{c_1}{m}} \sqrt{\frac{c_2}{m}} \sqrt{\frac{c_1}{m}} \sqrt{\frac{c_2}{m}} \sqrt{\frac{c_1}{m}} \sqrt{\frac{c_2}{m}} \sqrt{\frac{c_2}{m}}$$

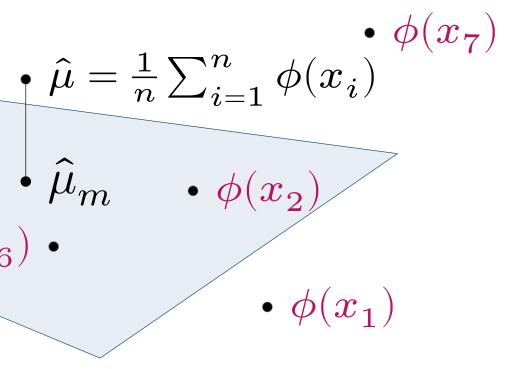
provided that $m \geq \max(67, 12K^2 \|C\|_{\mathcal{L}(\mathcal{H})}^{-1}) \log(m/\delta)$, where c_1, c_2, c_3 are constants of order $K \log(1/\delta)$.

Idea of the decomposition: for any $\lambda > 0$, it holds almost surely $\|\mu - \hat{\mu}_m\| \le \|\mu - \hat{\mu}\| + \|P_m^{\perp}(C + \lambda I)^{1/2}\|_{\mathcal{L}(\mathcal{H})}$

Application to the MMD: Similar bound for $\|\hat{\mu}_m(\rho) - \hat{\mu}_m(\nu)\|$ when approximating both $\hat{\mu}_m(\rho)$ and $\hat{\mu}_m(\nu)$ via independent subsamples \rightarrow Complexity $O(m^2)$.

Alessandro Rudi² Lorenzo Rosasco^{3,1}

³ CBMM, MIT, Istituto Italiano di Tecnologia



ed form:
$$w = \frac{1}{n}K_m^+K_{mn}1_n$$
.

$$\mathcal{N}igg(rac{12K^2\log(m/\delta)}{m}igg),$$

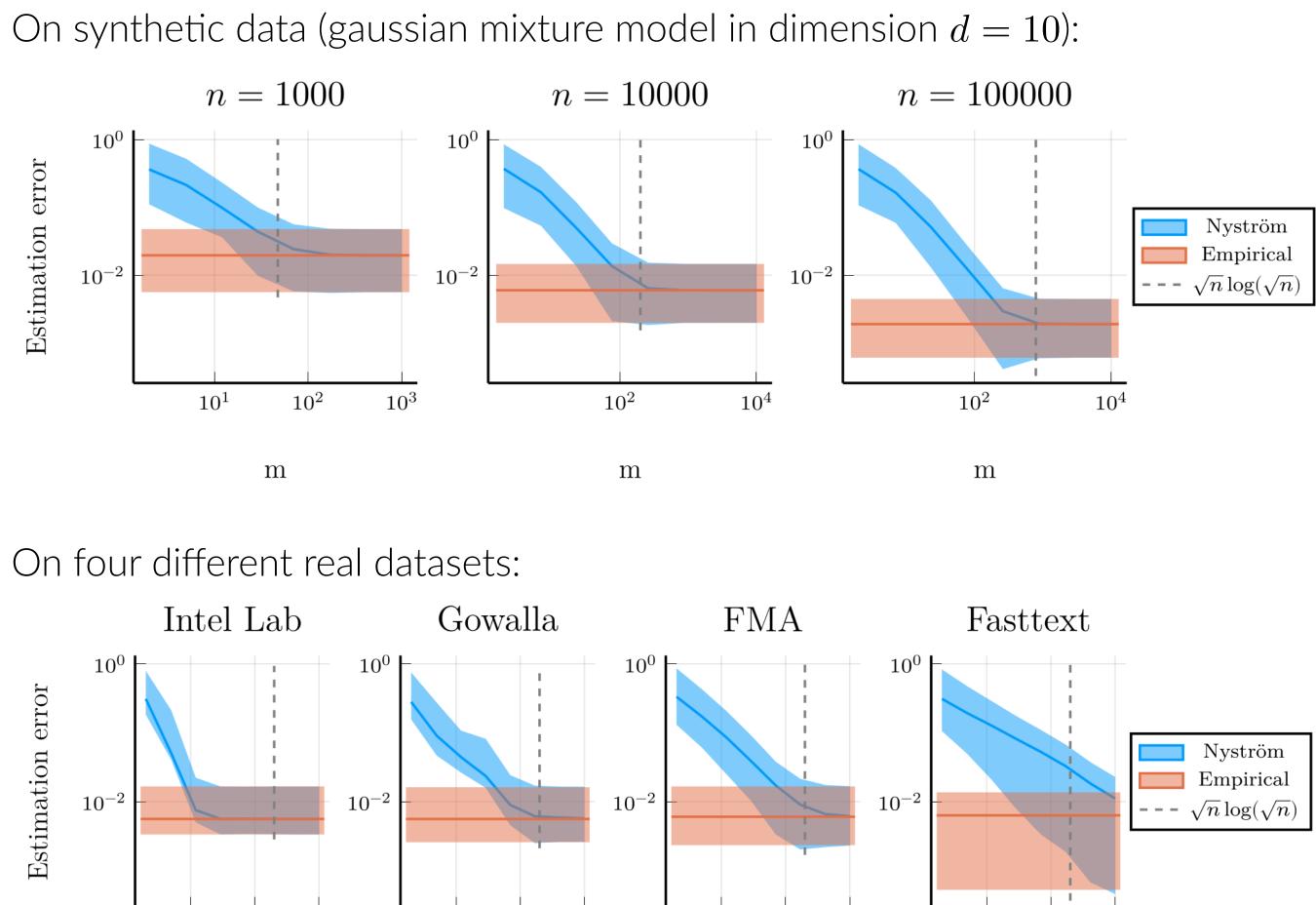
$$\cdot_{)}\|(C+\lambda I)^{-1/2}(\hat{\mu}-\tilde{\mu}_{m})\|.$$

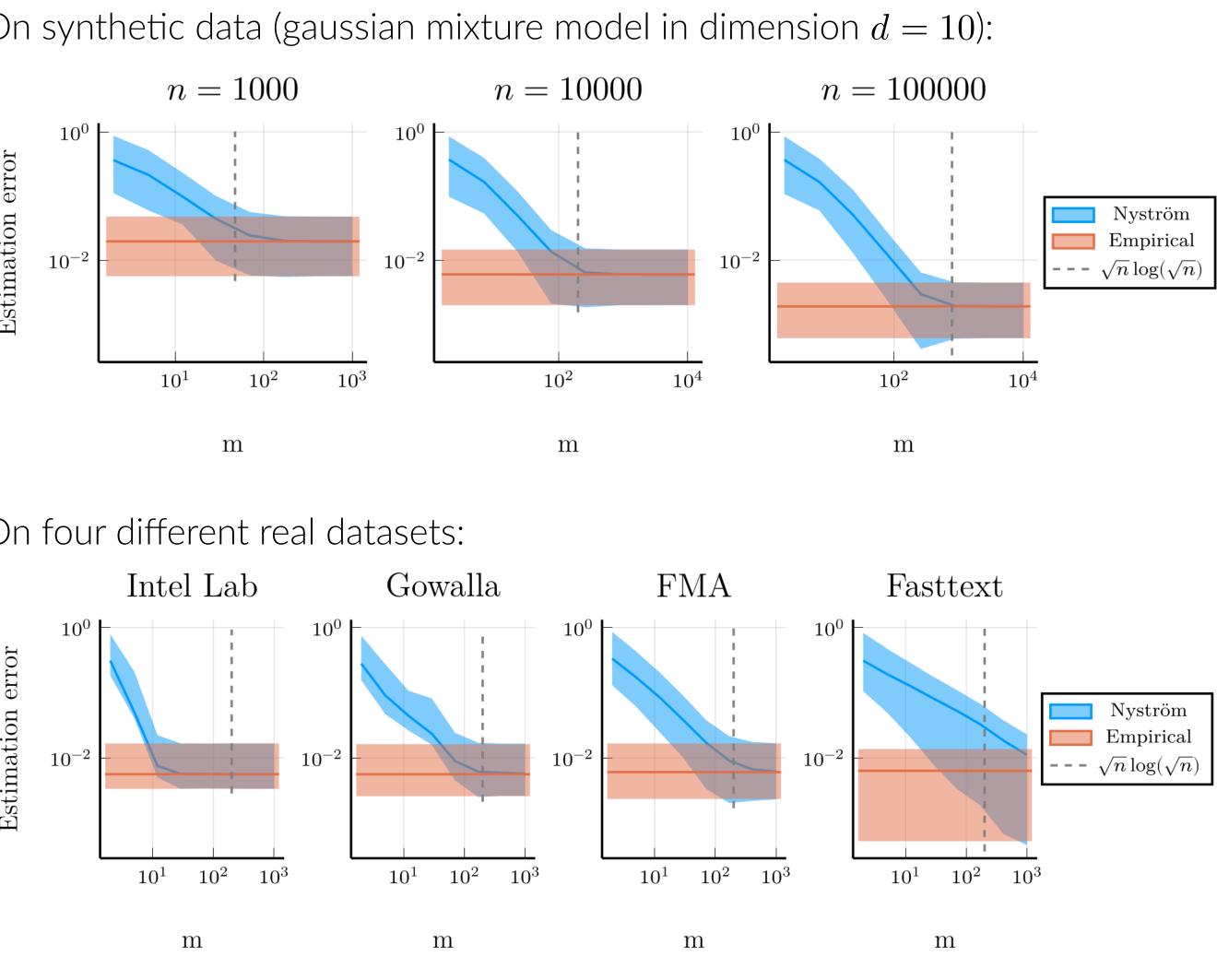
Corollary: Rates with Additional Hypotheses

Assume that for some c > 0,

- either $\mathcal{N}(\lambda) \leq c\lambda^{-\gamma}$ for some $\gamma \in]0,1]$ and $m = n^{1/(2-\gamma)}\log(n/\delta)$ • or $\mathcal{N}(\lambda) \leq \log(1 + c/\lambda)/\beta$, for some $\beta > 0$ and
- $m = \sqrt{n} \log(\sqrt{n} \max(1/\delta, c/(6K^2))).$

Empirical Results





- Francis Bach. "On the Equivalence between Kernel Quadrature Rules and Random Feature Expansions." In: The Journal of Machine Learning Research 18.1 (2017), pp. 714–751. Ayoub Belhadji, Rémi Bardenet, and Pierre Chainais. "Kernel Quadrature with DPPs." In: [2] Advances in Neural Information Processing Systems. Vol. 32. Dec. 31, 2019, pp. 12927-
- 12937.
- [3] Efren Cruz Cortes and Clayton Scott. "Scalable Sparse Approximation of a Sample Mean." In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Florence, Italy: IEEE, May 2014, pp. 5237–5241.
- Yutian Chen, Max Welling, and Alex Smola. "Super-Samples from Kernel Herding." In: [4] Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence. UAI'10. Arlington, Virginia, USA: AUAI Press, July 8, 2010, pp. 109–116.
- Krikamol Muandet et al. "Kernel Mean Estimation and Stein Effect." In: Proceedings of the [5] 31st International Conference on Machine Learning. International Conference on Machine Learning. PMLR, Jan. 27, 2014, pp. 10–18.

Then we get: $\|\mu - \hat{\mu}_m\| = O\left(\frac{1}{\sqrt{n}}\right).$

References