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Introduction

Problem: approximating a kernel mean embedding

𝜇 ∶= 𝜇(𝜌) ∶= ∫
𝒳

𝜙(𝑥) d𝜌(𝑥)

where 𝜙 ∶ 𝒳 → ℋ is a feature map associated to a reproducing kernel Hilbert

space ℋ with inner product ⟨·, ·⟩ℋ and norm ‖⋅‖.

Main assumption: there exists 𝐾 < ∞ s.t. sup𝑥∊𝒳‖𝜙(𝑥)‖ ≤ 𝐾.

Existing approaches

Empirical estimator: ̂𝜇 ∶= 𝜇( ̂𝜌𝑛) = 1
𝑛 ∑𝑛

𝑖=1 𝜙(𝑥𝑖).
Rate: ‖𝜇 − �̂�‖ = 𝑂(𝑛−1/2)
Time complexity: 𝑂(𝑛)
Space complexity: 𝑂(𝑛𝑑)
Complexity of MMD computation: 𝑂(𝑛2)

Sampling: Random features [1], DPPs [2] (no practical algorithm).

Incoherence-based selection [3] (limited guarantees), Herding [4].

Estimators based on Stein’s effect. [5] Improves constants but not the rate.

Problem statement

Design a new estimator ̂𝜇𝑚 computed from𝑚 samples which:

1. can be computed more efficiently than ̂𝜇;
2. preserves the statistical accuracy of ̂𝜇.

Applications

Quadratures in RKHS: The quantity ∥𝜇 − ∑𝑚
𝑗=1 𝑤𝑗𝜙(𝑥𝑗)∥ corresponds to

the worst-case error (for 𝑓 ∊ ℋ) of the approximation

∫ 𝑓(𝑥) d𝜌(𝑥) ≈
𝑚

∑
𝑗=1

𝑤𝑗𝑓(𝑥𝑗).

Approximate metrics between distributions:

MMD(𝜌1, 𝜌2) ∶= ‖𝜇(𝜌1) − 𝜇(𝜌2)‖ ≈ ‖ ̂𝜇𝑚(𝜌1) − ̂𝜇𝑚(𝜌2)‖.

Proposed Method

𝑚-dimensional
random subspace ̂𝜇𝑚𝜙(𝑥3) 𝜙(𝑥2)

𝜙(𝑥1)𝜙(𝑥4)

𝜙(𝑥5)

𝜙(𝑥6)

𝜙(𝑥7)
�̂� = 1

𝑛 ∑𝑛
𝑖=1 𝜙(𝑥𝑖)

Idea: project ̂𝜇 on the low-dimensional subspace ℋ𝑚 ∶=
span{𝜙(�̃�1), …, 𝜙(�̃�𝑚)} where the (�̃�𝑖)1≤𝑖≤𝑚 are drawn from the dataset.

̂𝜇𝑚 ∶= 𝑃𝑚 ̂𝜇 = ∑
1≤𝑗≤𝑚

𝑤𝑗𝜙(�̃�𝑗)

with 𝑚 ≪ 𝑛 and 𝑃𝑚 the projection on ℋ𝑚.

The weights (𝑤𝑗)1≤𝑗≤𝑚 can be computed in closed form: 𝑤 = 1
𝑛𝐾+

𝑚𝐾𝑚𝑛1𝑛.

Complexities: time Θ(𝑛𝑚𝑑 + 𝑚3), space Θ(𝑚𝑑).

How small can 𝑚 be chosen to get

the same statistical accuracy as ̂𝜇?

Theoretical Results

We denote:

𝐶 = ∫ 𝜙(𝑥) ⊗ 𝜙(𝑥) d𝜌(𝑥) the covariance operator.
𝒩(𝜆) ∶= tr(𝐶(𝐶 + 𝜆𝐼)−1) the effective dimension for any 𝜆 > 0.

Theorem: Main result

Assume data points 𝑥1, … , 𝑥𝑛 drawn i.i.d. from the probability distribution 𝜌,
and 𝑚 ≤ 𝑛 sub-samples ̃𝑥1, … , ̃𝑥𝑚 drawn uniformly with replacement from

{𝑥1 … , 𝑥𝑛}. Then, it holds with probability ≥ 1 − 𝛿 that

‖𝜇 − ̂𝜇𝑚‖ ≤ 𝑐1√
𝑛

+ 𝑐2
𝑚

+
𝑐3√log(𝑚/𝛿)

𝑚
√𝒩(12𝐾2 log(𝑚/𝛿)

𝑚
),

provided that 𝑚 ≥ max(67, 12𝐾2‖𝐶‖−1
ℒ(ℋ)) log(𝑚/𝛿), where 𝑐1, 𝑐2, 𝑐3 are con-

stants of order𝐾 log(1/𝛿).

Idea of the decomposition: for any 𝜆 > 0, it holds almost surely

‖𝜇 − ̂𝜇𝑚‖ ≤ ‖𝜇 − ̂𝜇‖ + ‖𝑃 ⟂
𝑚(𝐶 + 𝜆𝐼)1/2‖ℒ(ℋ)‖(𝐶 + 𝜆𝐼)−1/2( ̂𝜇 − ̃𝜇𝑚)‖.

Application to the MMD: Similar bound for ‖ ̂𝜇𝑚(𝜌) − ̂𝜇𝑚(𝜈)‖ when approximat-
ing both ̂𝜇𝑚(𝜌) and ̂𝜇𝑚(𝜈) via independent subsamples → Complexity 𝑂(𝑚2).

Corollary: Rates with Additional Hypotheses

Assume that for some 𝑐 > 0,

either𝒩(𝜆) ≤ 𝑐𝜆−𝛾 for some 𝛾 ∊]0, 1] and 𝑚 = 𝑛1/(2−𝛾) log(𝑛/𝛿)
or𝒩(𝜆) ≤ log(1 + 𝑐/𝜆)/𝛽, for some 𝛽 > 0 and
𝑚 =

√
𝑛 log(

√
𝑛 max(1/𝛿, 𝑐/(6𝐾2)).

Then we get: ‖𝜇 − ̂𝜇𝑚‖ = 𝑂( 1√
𝑛

).

Empirical Results

On synthetic data (gaussian mixture model in dimension 𝑑 = 10):

On four different real datasets:
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