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Abstract— Clustering of large-scale collections can
be performed efficiently based on low-dimensional
sketches obtained by averaging random Fourier fea-
tures of the items in the training collection. Some
prior knowledge about the data distribution is how-
ever required to design the sketching mechanism and
‘We show empirically the
importance of estimating the inter-cluster separation,

optimize its performance.

and give a proof of concept of how to learn it.

1 Introduction

With the availability of ever larger datasets, learning ac-
curate models becomes easier but efficient algorithms are
needed to process this information. Standard machine
learning approaches, which typically require a few passes
over the data, give way to approximate and randomized
methods with reduced computational costs and memory
usage. In the compressive learning framework, the dataset
X = [xq,...,X,,] is compressed into a single vector of gen-
eralized random moments s (the sketch, or mean map em-
bedding [1]), from which the learning task is then per-
formed. For example K-means clustering [2], which aims
at finding & cluster centers C' = [cq, ..., ¢;;] minimizing the
error SSE(X, C) :Zlgign min, ;. [x; —c;[3, can be per-
formed compressively [3] using random Fourier features,
i.e. computing the sketch as

exp(iijx)

2 I :
5= Z O(x,) with &(x)= i ,
i=1 exp(iw;,X)

where the sketch size m is a parameter and wq,...,w,,
are frequency vectors typically drawn i.i.d. according to
a multivariate normal distribution w; ~ N(0, éId). The
k centers are then recovered so that their mean sketch
matches s. Although we focus only on clustering in this
paper, note that this problem bears close similarities with
super-resolution (where k spikes have to be estimated pre-
cisely), and Gaussian modeling which can be performed
using the same sketch.

Goal and contribution. We provide empirical insights
on the choice of the parameter 2 driving the draw of the
random frequencies wy, ..., w,,,. We show that it connects
to the inter-cluster separation & £ min,; |c; —c} |y, where
(ci,...,c}) denotes the optimal solution, and discuss some
possible approaches to learn € from the training dataset.

2 Related work

From a theoretical perspective, statistical learning guar-
antees have been studied [4] for compressive clustering us-
ing a sketch computed via (weighted) random Fourier fea-
tures, and a separation assumption € > 0 has been shown
to be necessary for these guarantees to hold. Vice-versa,
and more quantitatively, learning guarantees have been
established when 02 < £2/logk, using an interpretation
of 02 as the variance of a spatial smoothing kernel. Yet,
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Figure 1: Impact of the sketch size m on clustering error.

when o2 is too small, reconstruction algorithms can get
stuck in local minima and theoretical error bounds be-
come vacuous. When performing compressive clustering
in practice, some empirical works suggested to tune o2
using an estimate of the intra-cluster variance [5] rather
than the inter-cluster separation £2. In certain scenarios it
was also observed that the second moment of the data [6]
can yield lower empirical error.

3 Simulations with synthetic data

To investigate more systematically the role of the ker-
nel variance o2 in the clustering performance, we gen-

erate data according to the Gaussian mixture 7, =
% Zlgigk N(u‘i? O'i2ntraId)7 where By Z.kd. N(07 U?nterld)'
We run compressive k-means with the CLOMPR algo-
rithm [3], and measure all the errors with the relative SSE
(RSSE), i.e. we normalize the SSE by the error of the
best solution obtained with the k-means algorithm (which
performs multiple passes over the data).

Figure 1 shows how the clustering error varies with o2
for different sketch sizes m. As the goal is to estimate
k points in dimension d, there are kd parameters to fit
in total and previous empirical work suggest indeed that
m = Q(kd) observations are required for successful recov-
ery, so we choose the sketch sizes accordingly. One can see
that the order of magnitude of the optimal variance, that
we denote U’;Q, only mildly depends on m and that the
range of kernel variances o2 for which near optimal per-
formance is achieved gets larger as the sketch size grows.
Overall there is a tradeoff between the sketch size m and
the precision at which the variance needs to be tuned. To
achieve high compression ratios, i.e. small m/(kd) with
good performance it seems important to have an accurate
estimate of the optimal kernel variance o 2.

We now fix the sketch size m and analyse the impact of
other parameters on ¢*? in Figure 2. On the left subfig-
ure, we vary the ratio p? = o2, /o2, .. which drives how
separated are the different clusters. We observe that at
fixed k, d and up to a multiplicative constant (= 1/2), the
optimal variance 022 scales linearly with p2. As shown by
the dashed curves, the minimum inter-cluster distance and
the second moment 0% of the dataset both have the same
scaling. However as shown on the other subfigures, the
variation of o*? with the dimension d and the number of
clusters k when p? is fixed seem to better fit the observed
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Figure 2: RSSE (lower = better = yellow) as a function of the kernel variance o2 and the variance ratio p? (left) the
number of clusters k (middle left), and the dimension d (right). Medians over 100 trials obtained with CLOMPR.
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Figure 3: FFT of g, for one random w. k =4 (6 pairs).

evolution of the minimum inter-cluster distance £2 with
these parameters. This suggests that ¢ is the quantity to
tune, and that the previously used heuristics of using the
intra-cluster variance o2, . or the global dataset variance
(whose expectation is of the order of d(o2,,, + 02, ), and
thus close to the mean inter-cluster distance in our setting)
are sub optimal, although they might have been observed

to work well for some specific settings [5, 6].

4 Learning the separation?

We now discuss how the separation £ could be learned
from the dataset. A simple method would be to run the k-
means algorithm on a smaller randomly chosen subset, but
this would not scale in high dimension and might perform
poorly in the presence of unbalanced clusters. We focus
on a proof of concept using sketches.

Imagine the data distribution is a pure mixture of diracs
P, = %Zl<i§k d.,- In the following, we denote p(w) the

characteristic function of P at w, and define p;; = (e +

cj)7 d;; S %(Cl — cj) for any 1, j.
When k = 2, we have
pl(w) 2 Lo 4 o) — i me cos(wTd,)
and f(w) 21— |p(w)|? =sin®*(w'd,,)

Thus, if we draw w ~ N (0,021,) with o, < 1/|d;,], then
we have with high probability f(w) ~ |w'd;,|?. Bounds
on the data itself can be used to bound [d;s| from above
and choose an appropriate variance o2. Multiple frequen-
cies can be used to improve the concentration, i.e. we use
20;1(219@1 f(w;)/m)Y/? as an estimator of . Using in
practice the true data sketch instead of the sketch of P is
not problematic given that we are sampling only low fre-
quencies. Estimations of o*? obtained with this method
on the data sketch are shown in Figure 2 (right).

When k > 2, robust estimation is not straightforward
but defining f;; = l|wTd. /| we have in a similar manner

0u(1) 2 S(R2Ip(1)]2 — k) = " cos(2r iyt

1<j

Hence the (f;;) can be recovered from the spectrum of
9y, as shown in Figure 3. Recovering € from the f;; is at
least straightforward in dimension d = 1, and a challenge
is to understand how to estimate e for d > 1 by combin-
ing estimations obtained in multiple directions w, possibly
leveraging the sparse FFT [7] to use as few samples of the
characteric function as possible.

If all the clusters are normally distributed and have
similar scales, we can model the data distribution P as
the convolution of a mixture of diracs P (located at the
cluster centers) and a Gaussian multivariate distribution
Pita = N(0,02,,.1;). The intra-cluster variance o2, .
can itself be estimated using a small sketch [5], hence any
empirical sketch s measured w.r.t. P can be deconvolved
by dividing it pointwise by the (analytical) sketch of P, .
in order to estimate the sketch of the mixture of diracs P.

5 Perspectives

We showed with empirical simulations that a good estima-
tion of the minimum inter-cluster separation is essential
for compressive clustering, and that information relative
to this quantity is contained in the characteristic function.
Building a robust algorithm to estimate the separation e
for any values of k, d is left for future work.
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