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Abstract— Clustering of large-scale collections can
be performed efficiently based on low-dimensional
sketches obtained by averaging random Fourier fea-
tures of the items in the training collection. Some
prior knowledge about the data distribution is how-
ever required to design the sketching mechanism and
optimize its performance. We show empirically the
importance of estimating the inter-cluster separation,
and give a proof of concept of how to learn it.

1 Introduction
With the availability of ever larger datasets, learning ac-
curate models becomes easier but efficient algorithms are
needed to process this information. Standard machine
learning approaches, which typically require a few passes
over the data, give way to approximate and randomized
methods with reduced computational costs and memory
usage. In the compressive learning framework, the dataset
𝑋 = [𝐱1, …, 𝐱𝑛] is compressed into a single vector of gen-
eralized random moments 𝐬 (the sketch, or mean map em-
bedding [1]), from which the learning task is then per-
formed. For example K-means clustering [2], which aims
at finding 𝑘 cluster centers 𝐶 = [𝐜1, …, 𝐜𝑘] minimizing the
error SSE(𝑋, 𝐶)=∑1≤𝑖≤𝑛 min1≤𝑗≤𝑘 ‖𝐱𝑖 −𝐜𝑗‖2

2, can be per-
formed compressively [3] using random Fourier features,
i.e. computing the sketch as

𝐬 ≜ 1
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where the sketch size 𝑚 is a parameter and 𝛚1, …, 𝛚𝑚
are frequency vectors typically drawn i.i.d. according to
a multivariate normal distribution 𝛚𝑖 ∼ 𝒩(0, 1

𝜎2
𝜅

𝐈𝑑). The
𝑘 centers are then recovered so that their mean sketch
matches 𝐬. Although we focus only on clustering in this
paper, note that this problem bears close similarities with
super-resolution (where 𝑘 spikes have to be estimated pre-
cisely), and Gaussian modeling which can be performed
using the same sketch.

Goal and contribution. We provide empirical insights
on the choice of the parameter 𝜎2

𝜅 driving the draw of the
random frequencies 𝛚1, …, 𝛚𝑚. We show that it connects
to the inter-cluster separation 𝜀 ≜ min𝑖≠𝑗 ‖𝐜∗

𝑖 −𝐜∗
𝑗‖2, where

(𝐜∗
1, …, 𝐜∗

𝑘) denotes the optimal solution, and discuss some
possible approaches to learn 𝜀 from the training dataset.

2 Related work
From a theoretical perspective, statistical learning guar-
antees have been studied [4] for compressive clustering us-
ing a sketch computed via (weighted) random Fourier fea-
tures, and a separation assumption 𝜀 > 0 has been shown
to be necessary for these guarantees to hold. Vice-versa,
and more quantitatively, learning guarantees have been
established when 𝜎2

𝜅 ≲ 𝜀2/ log 𝑘, using an interpretation
of 𝜎2

𝜅 as the variance of a spatial smoothing kernel. Yet,
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Figure 1: Impact of the sketch size 𝑚 on clustering error.

when 𝜎2
𝜅 is too small, reconstruction algorithms can get

stuck in local minima and theoretical error bounds be-
come vacuous. When performing compressive clustering
in practice, some empirical works suggested to tune 𝜎2

𝜅
using an estimate of the intra-cluster variance [5] rather
than the inter-cluster separation 𝜀2. In certain scenarios it
was also observed that the second moment of the data [6]
can yield lower empirical error.

3 Simulations with synthetic data
To investigate more systematically the role of the ker-
nel variance 𝜎2

𝜅 in the clustering performance, we gen-
erate data according to the Gaussian mixture 𝜋0 ≜
1
𝑘 ∑1≤𝑖≤𝑘 𝒩(𝛍𝑖, 𝜎2

intra𝐈𝑑), where 𝛍𝑖
𝑖.𝑖.𝑑.∼ 𝒩(0, 𝜎2

inter𝐈𝑑).
We run compressive k-means with the CLOMPR algo-
rithm [3], and measure all the errors with the relative SSE
(RSSE), i.e. we normalize the SSE by the error of the
best solution obtained with the k-means algorithm (which
performs multiple passes over the data).

Figure 1 shows how the clustering error varies with 𝜎2
𝜅

for different sketch sizes 𝑚. As the goal is to estimate
𝑘 points in dimension 𝑑, there are 𝑘𝑑 parameters to fit
in total and previous empirical work suggest indeed that
𝑚 = Ω(𝑘𝑑) observations are required for successful recov-
ery, so we choose the sketch sizes accordingly. One can see
that the order of magnitude of the optimal variance, that
we denote 𝜎∗

𝜅
2, only mildly depends on 𝑚 and that the

range of kernel variances 𝜎2
𝜅 for which near optimal per-

formance is achieved gets larger as the sketch size grows.
Overall there is a tradeoff between the sketch size 𝑚 and
the precision at which the variance needs to be tuned. To
achieve high compression ratios, i.e. small 𝑚/(𝑘𝑑) with
good performance it seems important to have an accurate
estimate of the optimal kernel variance 𝜎∗

𝜅
2.

We now fix the sketch size 𝑚 and analyse the impact of
other parameters on 𝜎∗

𝜅
2 in Figure 2. On the left subfig-

ure, we vary the ratio 𝜌2 ≜ 𝜎2
inter/𝜎2

intra, which drives how
separated are the different clusters. We observe that at
fixed 𝑘, 𝑑 and up to a multiplicative constant (≈ 1/2), the
optimal variance 𝜎∗

𝜅
2 scales linearly with 𝜌2. As shown by

the dashed curves, the minimum inter-cluster distance and
the second moment 𝜎2

𝑋 of the dataset both have the same
scaling. However as shown on the other subfigures, the
variation of 𝜎∗

𝜅
2 with the dimension 𝑑 and the number of

clusters 𝑘 when 𝜌2 is fixed seem to better fit the observed
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Figure 2: RSSE (lower = better = yellow) as a function of the kernel variance 𝜎2
𝜅 and the variance ratio 𝜌2 (left) the

number of clusters 𝑘 (middle left), and the dimension 𝑑 (right). Medians over 100 trials obtained with CLOMPR.
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Figure 3: FFT of 𝑔𝛚 for one random 𝛚. 𝑘 = 4 (6 pairs).

evolution of the minimum inter-cluster distance 𝜀2 with
these parameters. This suggests that 𝜀 is the quantity to
tune, and that the previously used heuristics of using the
intra-cluster variance 𝜎2

intra or the global dataset variance
(whose expectation is of the order of 𝑑(𝜎2

intra +𝜎2
inter), and

thus close to the mean inter-cluster distance in our setting)
are sub optimal, although they might have been observed
to work well for some specific settings [5, 6].

4 Learning the separation?
We now discuss how the separation 𝜀 could be learned
from the dataset. A simple method would be to run the k-
means algorithm on a smaller randomly chosen subset, but
this would not scale in high dimension and might perform
poorly in the presence of unbalanced clusters. We focus
on a proof of concept using sketches.

Imagine the data distribution is a pure mixture of diracs
𝑃𝐶 = 1

𝑘 ∑1≤𝑖≤𝑘 𝛿𝑐𝑖
. In the following, we denote 𝜑(𝛚) the

characteristic function of 𝑃𝐶 at 𝛚, and define 𝛍𝑖𝑗 ≜ 1
2 (𝐜𝑖 +

𝐜𝑗), 𝐝𝑖𝑗 ≜ 1
2 (𝐜𝑖 − 𝐜𝑗) for any 𝑖, 𝑗.

When 𝐤 = 𝟐, we have
𝜑(𝛚) ≜ 1

2 (𝑒𝑖𝛚⊤𝐜1 + 𝑒𝑖𝛚⊤𝐜2) = 𝑒𝑖𝛚⊤𝛍12 cos(𝛚⊤𝐝12)
and 𝑓(𝛚) ≜ 1 − |𝜑(𝛚)|2 = sin2(𝛚⊤𝐝12)

Thus, if we draw 𝛚 ∼ 𝒩(0, 𝜎2
𝜔𝐈𝑑) with 𝜎𝜔 ≪ 1/‖𝐝12‖, then

we have with high probability 𝑓(𝛚) ≈ |𝛚⊤𝐝12|2. Bounds
on the data itself can be used to bound ‖𝐝12‖ from above
and choose an appropriate variance 𝜎2

𝜔. Multiple frequen-
cies can be used to improve the concentration, i.e. we use
2𝜎−1

𝜔 (∑1≤𝑖≤𝑚 𝑓(𝜔𝑖)/𝑚)1/2 as an estimator of 𝜀. Using in
practice the true data sketch instead of the sketch of 𝑃𝐶 is
not problematic given that we are sampling only low fre-
quencies. Estimations of 𝜎∗

𝜅
2 obtained with this method

on the data sketch are shown in Figure 2 (right).
When 𝐤 > 𝟐, robust estimation is not straightforward

but defining 𝑓𝑖𝑗 ≜ 1
𝜋 |𝛚𝑇𝐝𝑖𝑗| we have in a similar manner

𝑔𝛚(𝑡) ≜ 1
2 (𝑘2|𝜑(𝑡𝛚)|2 − 𝑘) = ∑

𝑖<𝑗
cos(2𝜋𝑓𝑖𝑗𝑡).

Hence the (𝑓𝑖𝑗) can be recovered from the spectrum of
𝑔𝛚 as shown in Figure 3. Recovering 𝜀 from the 𝑓𝑖𝑗 is at
least straightforward in dimension 𝑑 = 1, and a challenge
is to understand how to estimate 𝜀 for 𝑑 > 1 by combin-
ing estimations obtained in multiple directions 𝛚, possibly
leveraging the sparse FFT [7] to use as few samples of the
characteric function as possible.

If all the clusters are normally distributed and have
similar scales, we can model the data distribution 𝑃 as
the convolution of a mixture of diracs 𝑃𝐶 (located at the
cluster centers) and a Gaussian multivariate distribution
𝑃intra = 𝒩(0, 𝜎2

intra𝐈𝑑). The intra-cluster variance 𝜎2
intra

can itself be estimated using a small sketch [5], hence any
empirical sketch 𝐬 measured w.r.t. 𝑃 can be deconvolved
by dividing it pointwise by the (analytical) sketch of 𝑃intra
in order to estimate the sketch of the mixture of diracs 𝑃𝐶.

5 Perspectives
We showed with empirical simulations that a good estima-
tion of the minimum inter-cluster separation is essential
for compressive clustering, and that information relative
to this quantity is contained in the characteristic function.
Building a robust algorithm to estimate the separation 𝜀
for any values of 𝑘, 𝑑 is left for future work.
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