Efficient and Privacy-Preserving Compressive Learning

Ph.D. Defense

Author: Antoine Chatalic Supervisor: Rémi Gribonval Jury members: Francis Bach (reviewer) Lorenzo Rosasco (reviewer) Jamal Atif Mike Davies Magalie Fromont Renoir Marc Tommasi

Université de Rennes 1, IRISA/Inria, Panama research group

November 19th, 2020

Efficient and Privacy-Preserving Compressive Learning

Efficient and Privacy-Preserving Compressive Learning

1 An Introduction to Large-Scale Learning

2 The Compressive Learning Framework

- 3 Privacy-Preserving Compressive Learning
 - A formalism to measure privacy
 - A private variant of the sketching mechanism
 - The utility-privacy tradeoff
 - A subsampling mechanism
- 4 Efficient Sketching using Structured Matrices
 - Construction of structured operators
 - Benefits of fast transforms
 - Some theoretical elements

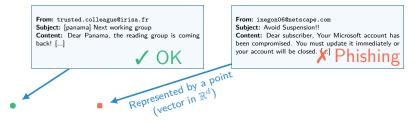
5 Conclusion: Summary and Perspectives

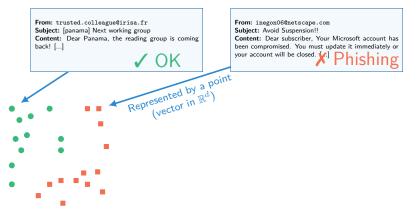
Example: email classification for phishing detection.

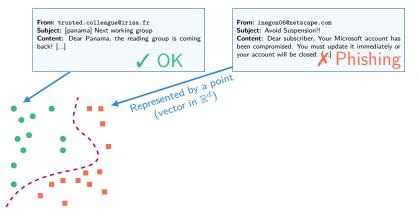
From: trusted.colleague@irisa.fr
Subject: [panama] Next working group
Content: Dear Panama, the reading group is coming
back! [...]

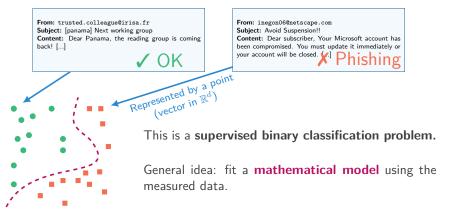
✓ OK

From: inegon0@Baetscape.com Subject: Avoid Suspension!! Content: Dear subscriber, Your Microsoft account has been compromised. You must update it immediately or your account will be closed.





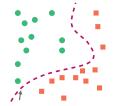




Large-Scale Learning / Learning Framework / Compressive Learning / Structured Matrices / and Perspectives

Binary classification

(supervised learning)



Model: smooth separator.

Applications: phising detection, image classification...

An Introduction to Large-Stale Learning Learning remework Privacy-Preserving Structured Matrices Conduction: Summary Structured Matrices and Perspectives	An Introduction to Large-Scale Learning	The Compressive Learning Framework	Privacy-Preserving Compressive Learning	Efficient Sketching using Structured Matrices	Conclusion: Summary and Perspectives
---	--	---------------------------------------	--	--	---

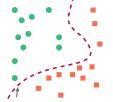
Binary classification (supervised learning)

Clustering (unsupervised learning)

Model: smooth separator.

Applications: phising detection, image classification...

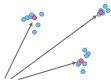
Binary classification (supervised learning)



Model: smooth separator.

Applications: phising detection, image classification...

Clustering (unsupervised learning)



Model: set of k points.

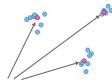
Applications: community detection, anomaly detection...

Binary classification (supervised learning)

Model: smooth separator.

Applications: phising detection, image classification...

Clustering (unsupervised learning)

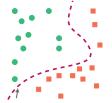


Model: set of k points.

Applications: community detection, anomaly detection...

Principal component analysis (PCA) (unsupervised learning)

Binary classification (supervised learning)



Model: smooth separator.

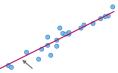
Applications: phising detection, image classification...

Clustering (unsupervised learning)

Model: set of k points.

Applications: community detection, anomaly detection...

Principal component analysis (PCA) (unsupervised learning)



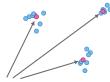
Model: *k*-dimensional linear subspace.

Applications: compression, data visualization...

Binary classification (supervised learning)

Model: smooth separator.

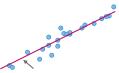
Applications: phising detection, image classification... Clustering (unsupervised learning)



Model: set of k points.

Applications: community detection, anomaly detection...

Principal component analysis (PCA) (unsupervised learning)



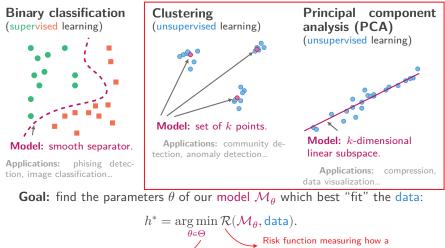
Model: *k*-dimensional linear subspace.

Applications: compression, data visualization...

Goal: find the parameters θ of our model \mathcal{M}_{θ} which best "fit" the data:

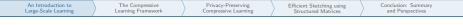
 $h^* = \mathop{\arg\min}_{\theta \in \Theta} \mathcal{R}(\mathcal{M}_\theta, \mathsf{data}).$ Set of parameters defining a set of parameters defining a model "fits" the data

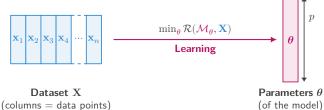
An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives



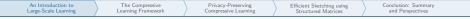
Set of parameters defining a low dimension model

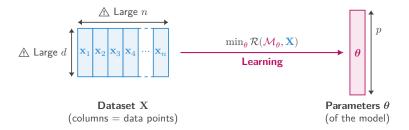
model "fits" the data



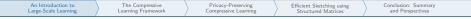


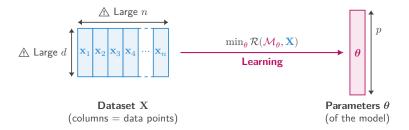
(of the model)



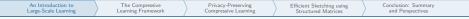


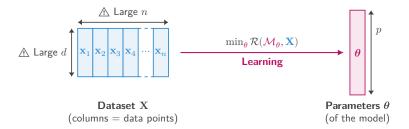
- ← Large data collections.
- 1 High-dimensional features.



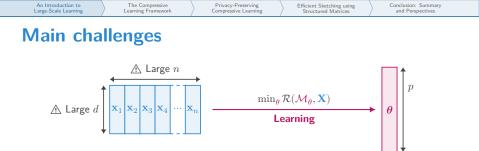


- ← Large data collections.
- High-dimensional features.
- 🧮 Distributed datasets.
- ••• Data streams.





- ← Large data collections.
- 1 High-dimensional features.
- 🧮 Distributed datasets.
- ••• Data streams.
- Sensitive data (e.g. emails, medical data).



Dataset X (columns = data points)

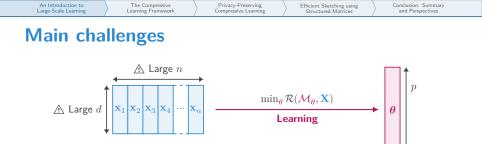
Parameters θ (of the model)

Challenges:

- ← Large data collections.
- 1 High-dimensional features.
- 🧮 Distributed datasets.
- ••• Data streams.
- Sensitive data (e.g. emails, medical data).

Limitations of "standard" methods:

- C Multiple passes on the data.
- Z Computationally expensive.
- High energy consumption.



 $\begin{array}{l} \textbf{Dataset X} \\ (\text{columns} = \text{data points}) \end{array}$

Parameters θ (of the model)

Challenges:

- ← Large data collections.
- 1 High-dimensional features.
- 🧮 Distributed datasets.
- ••• Data streams.
- Sensitive data (e.g. emails, medical data).

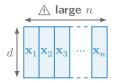
Limitations of "standard" methods:

- C Multiple passes on the data.
- Z Computationally expensive.
- ➡ High energy consumption.

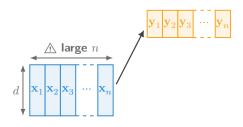
Can we do better?

An Introduction to Large-Scale Learning The Compressive Learning Framework Privacy-Preserving Compressive Learning Efficient Sketching using Structured Matrices Conclusion: Summary and Perspectives
--

Q Reduce/compress the data!

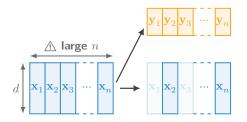


🖓 Reduce/compress the data!



Dimensionality Reduction Data-dependent or independent.

Reduce/compress the data!

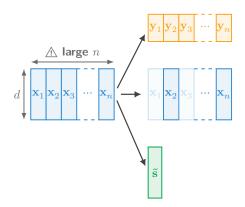


Dimensionality Reduction Data-dependent or independent.

Coresets

Subsampling, geometric decompositions.

🖓 Reduce/compress the data!



Dimensionality Reduction
 Data-dependent or independent.

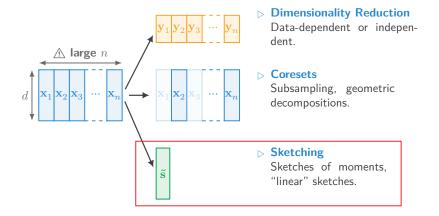
▷ Coresets

Subsampling, geometric decompositions.

▷ Sketching

Sketches of moments, "linear" sketches.

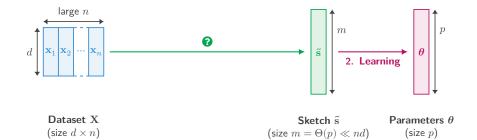
Reduce/compress the data!



The Compressive Learning Framework

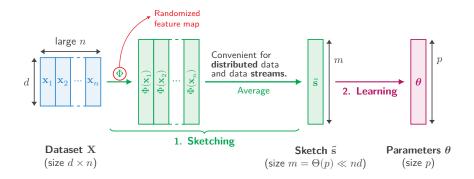
An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary	
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives	

Compressive learning



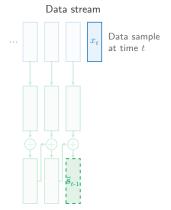
An Introduction to	Conclusion: Summary
Large-Scale Learning Compressive Learning Compressive Learning Structured Matrices	and Perspectives

Compressive learning

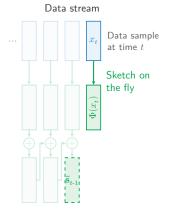


The sketch is just a vector of "generalized" moments!

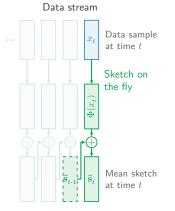
An Introduction to The Compressive Large-Scale Learning Privacy-Preserving Compressive Learning Efficient Sketching using Structured Matrices Conclusion: Summary and Perspectives	
--	--



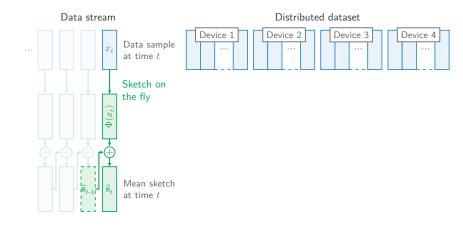
An Introduction to Large-Scale Learning Framework Privacy-Preserving Compressive Learning Structured Matrices and Persy	
---	--



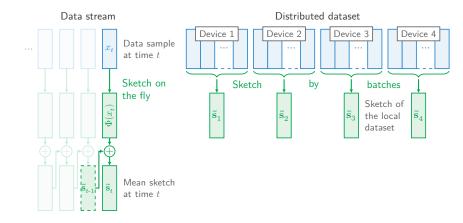
An Introduction to Large-Scale Learning Framework Privacy-Preserving Compressive Learning Structured Matrices and Persy	
---	--



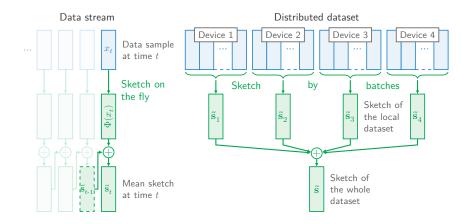
	An Introduction to Large-Scale Learning	The Compressive Learning Framework	Privacy-Preserving Compressive Learning	Efficient Sketching using Structured Matrices	Conclusion: Summary and Perspectives	
--	--	---------------------------------------	--	--	---	--

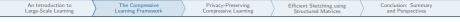


An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

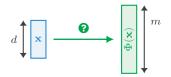


Large-Scale Learning / Learning Framework / Compressive Learning / Structured Matrices / and Perspectives	An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
	Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives



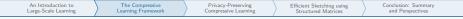


Which feature map Φ can we use?

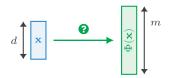


We consider $\Phi(\mathbf{x}) \triangleq \rho(\mathbf{\Omega}^T \mathbf{x})$ where

- $\Omega = [\omega_1, ..., \omega_m] \in \mathbb{R}^{d \times m}$ is a random matrix (e.g., i.i.d. normal entries);
- ρ is a **deterministic non-linear** function applied pointwise.



Which feature map Φ can we use?

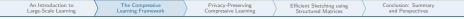


We consider $\Phi(\mathbf{x}) \triangleq \rho(\mathbf{\Omega}^T \mathbf{x})$ where

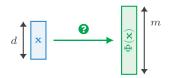
- $\Omega = [\omega_1, ..., \omega_m] \in \mathbb{R}^{d \times m}$ is a random matrix (e.g., i.i.d. normal entries);
- ρ is a deterministic non-linear function applied pointwise.

Examples:

• For k-means: $\rho(t) \triangleq \exp(-\iota t)$ (random Fourier features) [Rahimi and Recht, 2008. "Random Features for Large-Scale Kernel Machines"] (Sketch = random samples of the empirical characteristic function.)



Which feature map Φ can we use?



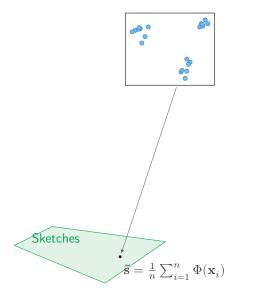
We consider $\Phi(\mathbf{x}) \triangleq \rho(\mathbf{\Omega}^T \mathbf{x})$ where

- $\Omega = [\omega_1, ..., \omega_m] \in \mathbb{R}^{d \times m}$ is a random matrix (e.g., i.i.d. normal entries);
- ρ is a deterministic non-linear function applied pointwise.

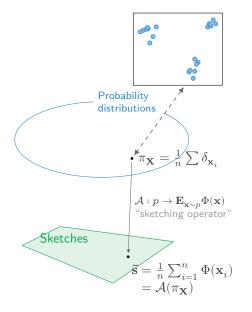
Examples:

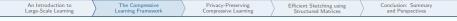
- For k-means: $\rho(t) \triangleq \exp(-\iota t)$ (random Fourier features) [Rahimi and Recht, 2008. "Random Features for Large-Scale Kernel Machines"] (Sketch = random samples of the empirical characteristic function.)
- For PCA: $\rho(t) \triangleq t^2$ (random quadratic features) (Sketch = rank-one linear measurements of the covariance matrix for centered data.)

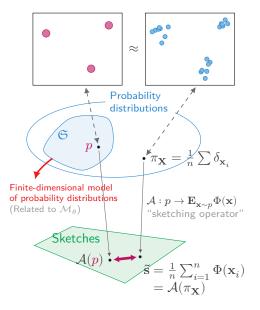
An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary	
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives	

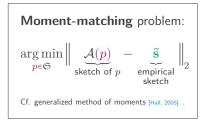


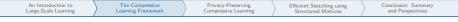
An Introduction to The Compressive Privacy-Preserving Compressive Learning Framework Compressive Learning Structured Matrices Contractions and Perspectives	
---	--

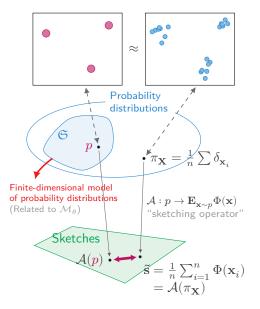


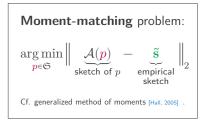








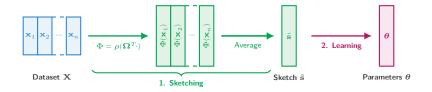




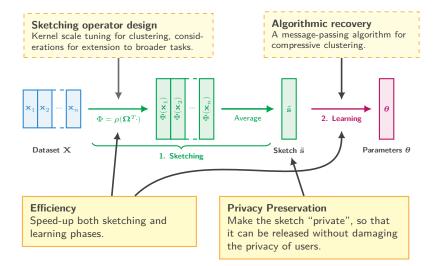
▲ Difficult/non-convex problem! Heuristics can be used, e.g. "continuous" matching pursuit. [Keriven et al., 2017]

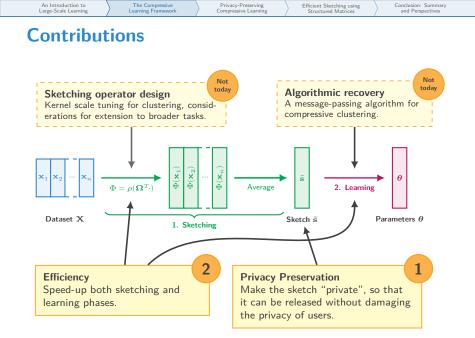
An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

Contributions



Contributions



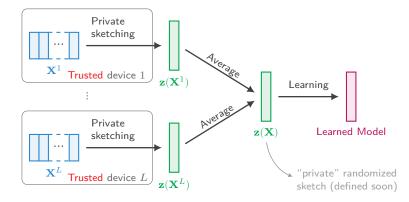


Privacy-Preserving Compressive Learning

(Work in collaboration with V. Schellekens, F. Houssiau, L. Jacques and Y.-A. de Montjoye)

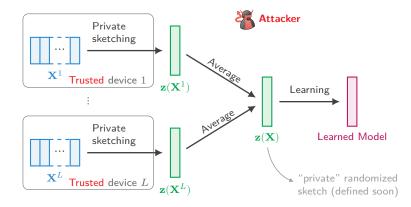
An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

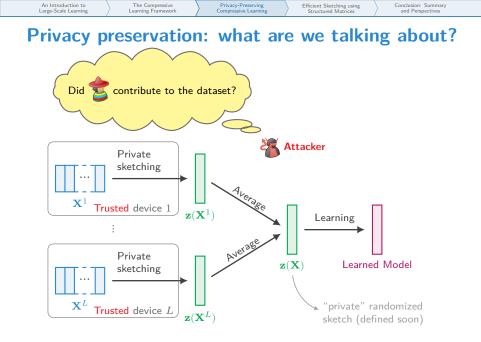
Privacy preservation: what are we talking about?

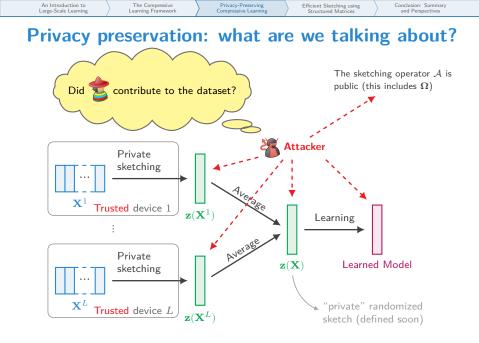


An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

Privacy preservation: what are we talking about?







[Dwork et al., 2006. "Calibrating Noise to Sensitivity in Private Data Analysis"]

Definition: The randomized mechanism $\mathbf{z}(\cdot)$ achieves (ε, δ) -differential privacy (DP) iff for any (input) neighbor datasets $\mathbf{X}_1 \sim \mathbf{X}_2$ and set *S*:

 $\mathbb{P}[\mathbf{z}(\mathbf{X}_1) \in S] \leq \exp(\varepsilon) \, \mathbb{P}[\mathbf{z}(\mathbf{X}_2) \in S] + \delta$

[Dwork et al., 2006. "Calibrating Noise to Sensitivity in Private Data Analysis"]

Definition: The randomized mechanism $\mathbf{z}(\cdot)$ achieves (ε, δ) -differential privacy (DP) iff for any (input) neighbor datasets $\mathbf{X}_1 \sim \mathbf{X}_2$ and set S:

 $\mathbb{P}[\mathbf{z}(\mathbf{X}_1) \in S] \le \exp(\varepsilon) \, \mathbb{P}[\mathbf{z}(\mathbf{X}_2) \in S] + \boldsymbol{\delta}$

Examples of neighboring relations:

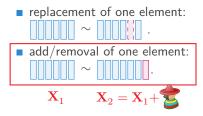
replacement of one element:
 add/removal of one element:
 \mathbf{X}_1 $\mathbf{X}_2 = \mathbf{X}_1 + \mathbf{\Sigma}_2$

[Dwork et al., 2006. "Calibrating Noise to Sensitivity in Private Data Analysis"]

Definition: The randomized mechanism $\mathbf{z}(\cdot)$ achieves (ε, δ) -differential privacy (DP) iff for any (input) neighbor datasets $\mathbf{X}_1 \sim \mathbf{X}_2$ and set S:

 $\mathbb{P}[\mathbf{z}(\mathbf{X}_1) \in S] \le \exp(\varepsilon) \, \mathbb{P}[\mathbf{z}(\mathbf{X}_2) \in S] + \boldsymbol{\delta}$

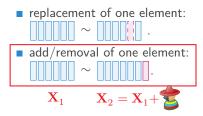
Examples of neighboring relations:



[Dwork et al., 2006. "Calibrating Noise to Sensitivity in Private Data Analysis"]

Definition: The randomized mechanism $\mathbf{z}(\cdot)$ achieves (ε, δ) -differential privacy (DP) iff for any (input) neighbor datasets $\mathbf{X}_1 \sim \mathbf{X}_2$ and set S: $\mathbb{P}[\mathbf{z}(\mathbf{X}_1) \in S] \leq \exp(\varepsilon) \mathbb{P}[\mathbf{z}(\mathbf{X}_2) \in S] + \delta$ $\mathbb{P}[\mathbf{z}(\mathbf{X}_1) \in S] \leq \exp(\varepsilon) \mathbb{P}[\mathbf{z}(\mathbf{X}_2) \in S] + \delta$

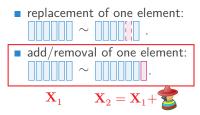
Examples of neighboring relations:



[Dwork et al., 2006. "Calibrating Noise to Sensitivity in Private Data Analysis"]

Definition: The randomized mechanism $\mathbf{z}(\cdot)$ achieves (ε, δ) -differential privacy (DP) iff for any (input) neighbor datasets $\mathbf{X}_1 \sim \mathbf{X}_2$ and set S: $\mathbb{P}[\mathbf{z}(\mathbf{X}_1) \in S] \leq \exp(\varepsilon) \mathbb{P}[\mathbf{z}(\mathbf{X}_2) \in S] + \delta$ $\mathbb{P}[\mathbf{z}(\mathbf{X}_1) \in S] \leq \exp(\varepsilon) \mathbb{P}[\mathbf{z}(\mathbf{X}_2) \in S] + \delta$

Examples of neighboring relations:

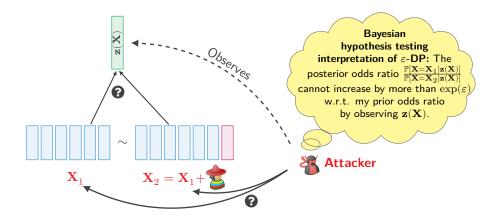


Notation:

- (ε, δ) -DP in general;
- ε -DP when $\delta = 0$.

An Introduction to The Compressive Privacy-Preserving Efficient Sketching Large-Scale Learning Framework Compressive Learning Structured Matri	
--	--

Interpretation of *c*-DP

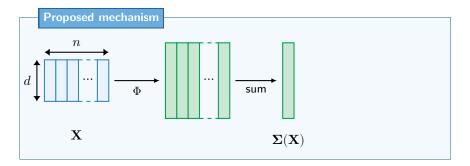


An Introduction to The Compressive Privacy-Preserving Compressive Learning Framework Compressive Learning Structured Matrices Conclusion: Summary and Perspectives	
--	--

Simple way to satisfy DP: add noise to the output.

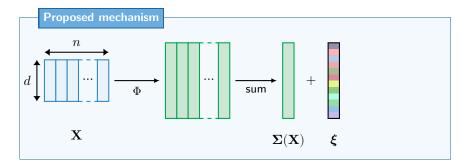
An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

Simple way to satisfy DP: add noise to the output.



An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

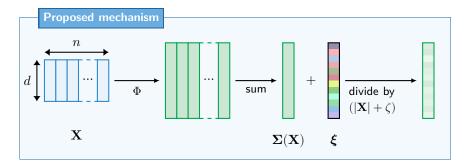
Simple way to satisfy DP: add noise to the output.



• Add noise $\boldsymbol{\xi}$ on the sum of features.

An Introduction to Large-Scale Learning Compressive Learning Framework Compressive Learning Structured Matrices Conclusion: Summary	
--	--

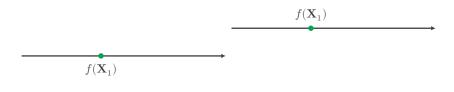
Simple way to satisfy DP: add noise to the output.



- Add noise $\boldsymbol{\xi}$ on the sum of features.
- Add noise ζ on $|\mathbf{X}|$.

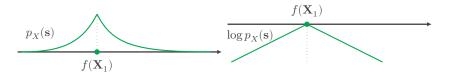


• Laplacian noise for pure ε -DP.



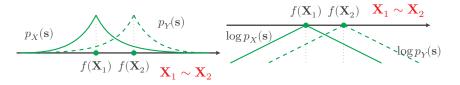
An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

• Laplacian noise for pure ε -DP.



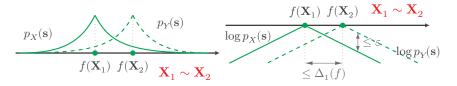
An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

• Laplacian noise for pure ε -DP.



An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

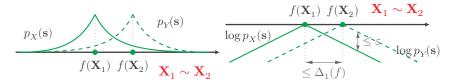
• Laplacian noise for pure ε -DP.



$$\text{Noise level: } b^* = \frac{\Delta_1(f)}{\varepsilon} \text{ with } \Delta_1(f) \triangleq \sup_{\mathbf{X}_1 \sim \mathbf{X}_2} \|f(\mathbf{X}_1) - f(\mathbf{X}_2)\|_1.$$

An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

■ Laplacian noise for pure *ε*-DP.



$$\text{Noise level: } b^* = \frac{\Delta_1(f)}{\varepsilon} \text{ with } \Delta_1(f) \triangleq \sup_{\mathbf{X}_1 \sim \mathbf{X}_2} \|f(\mathbf{X}_1) - f(\mathbf{X}_2)\|_1.$$

[Dwork et al., 2006. "Calibrating Noise to Sensitivity in Private Data Analysis"]

 $\label{eq:Gaussian noise for approximate } \begin{aligned} & \mathsf{Gaussian noise for approximate } (\varepsilon, \delta) \text{-}\mathsf{DP.} \\ & \mathsf{The noise scales with } \ \Delta_2(f) \triangleq \sup_{\mathbf{X}_1 \sim \mathbf{X}_2} \| f(\mathbf{X}_1) - f(\mathbf{X}_2) \|_2. \end{aligned}$

[Balle and Wang, 2018. "Improving the Gaussian Mechanism for Differential Privacy"]

An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

• Laplacian noise for pure ε -DP.

$$\begin{array}{c} f(\mathbf{X}_{1}) \ f(\mathbf{X}_{2}) \quad \mathbf{X}_{1} \sim \mathbf{X}_{2} \\ \hline \log p_{X}(\mathbf{s}) \\ \hline f(\mathbf{X}_{1}) \ f(\mathbf{X}_{2}) \quad \mathbf{X}_{1} \sim \mathbf{X}_{2} \\ \hline \log p_{X}(\mathbf{s}) \\ \hline f(\mathbf{X}_{1}) \ f(\mathbf{X}_{2}) \quad \mathbf{X}_{1} \sim \mathbf{X}_{2} \\ \hline \\ Noise level: \ b^{*} = \frac{\Delta_{1}(f)}{\varepsilon} \ \text{with} \ \boxed{\Delta_{1}(f) \triangleq \sup_{\mathbf{X}_{1} \sim \mathbf{X}_{2}} \|f(\mathbf{X}_{1}) - f(\mathbf{X}_{2})\|_{1}} \\ \hline \\ [Dwork et al., 2006. "Calibrating Noise to Sensitivity in Private Data Analysis"] \\ \bullet \ Gaussian noise for approximate (\varepsilon, \delta)-DP. \\ The noise scales with \ \boxed{\Delta_{2}(f) \triangleq \sup_{\mathbf{X}_{1} \sim \mathbf{X}_{2}} \|f(\mathbf{X}_{1}) - f(\mathbf{X}_{2})\|_{2}} \\ \hline \\ [Balle and Wang, 2018. "Improving the Gaussian Mechanism for Differential Privacy"] \end{array}$$

An Introduction to Large-Scale Learning Framework Privacy-Preserving Compressive Learning Structured Matrices Conclusion: Summary and Perspectives
--

Privacy results

	Pure ε -DP	Approximate (ε, δ) -DP
	$\Delta_1(\mathbf{\Sigma})$	$\Delta_2(\mathbf{\Sigma})$
Fourier features	$\leq \sqrt{2}m$	$=\sqrt{m}$
$+ \ \Omega$ nonresonant	$=\sqrt{2}m$	$=\sqrt{m}$
Quadratic features	$= \ \mathbf{\Omega} \ _2^2$	$= \ \mathbf{\Omega}^T\ _{2\to 4}^2$
$+ \ \Omega$ union of orthogonal bases.	=m/d	No particular closed form.

(Results for the "replacement" neighboring relation can be found in the manuscript.)

An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

Privacy results

		Pure ε -DP	Approximate (ε, δ) -DP	
Holds almost		$\Delta_1(\mathbf{\Sigma})$	$\Delta_2(\boldsymbol{\Sigma})$	Order-4 tensor approximation
surely!	Fourier features	$\leq \sqrt{2}m$	$=\sqrt{m}$	problem (NP-
	$_+\Omega$ nonresonant	$=\sqrt{2}m$	$=\sqrt{m}$	hard)
	Quadratic features	$= \ \boldsymbol{\Omega} \ _2^2$	$= \ \mathbf{\Omega}^T \ _{2 ightarrow 4}^2$	
	$+ \ \Omega$ union of orthogonal bases.	=m/d	No particular closed form.	

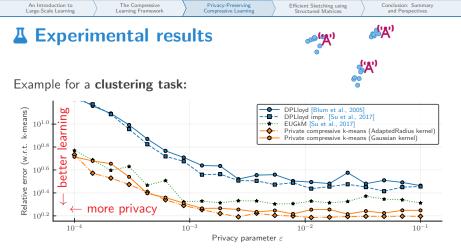
(Results for the "replacement" neighboring relation can be found in the manuscript.)

Different problems:

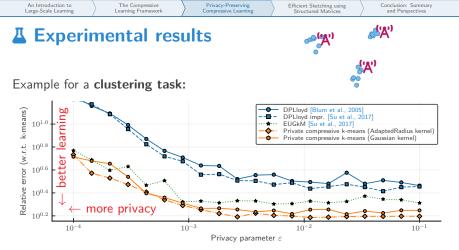
- obtaining upper bounds (easy);
- obtaining sharp bounds (*);
- computing numerically the bound (in some settings).

An Introduction to Large-Scale Learning	The Compressive Learning Framework	Privacy-Preserving Compressive Learning	Efficient Sketching using Structured Matrices	Conclusion: Summary and Perspectives
📕 Experi	mental res	ults	65 9 0 0	ø
			60	

An Introduction to Large-Scale Learning	The Compressive Learning Framework	Privacy-Preserving Compressive Learning	Efficient Sketching using Structured Matrices	Conclusion: Summary and Perspectives
Experimental results		" (A')	<mark>ه(</mark> ۳.)	
			0 00 0	(A)



Gowalla dataset, $d = 2, n \approx 10^6$ (real GPS data) – medians over 100 trials.



Gowalla dataset, $d = 2, n \approx 10^6$ (real GPS data) – medians over 100 trials.

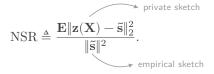
Observations:

- Competitive results with other methods from the literature.
- DPLloyd suffers from its "iterative" nature.

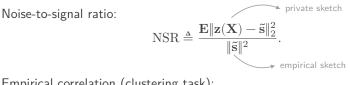
	nclusion: Summary and Perspectives
--	---------------------------------------

Role of the noise-to-signal ratio

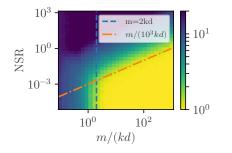
Noise-to-signal ratio:



Role of the noise-to-signal ratio



Empirical correlation (clustering task):

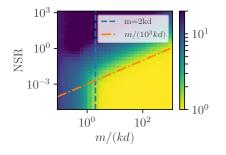


Color = relative error.

Recall: m = sketch size kd pprox number of parameters to learn

Role of the noise-to-signal ratio

Empirical correlation (clustering task):



Recall: m = sketch size $kd \approx$ number of parameters to learn

Color = relative error.

For m large enough and fixed, the $\rm NSR$ is good indicator of the error.

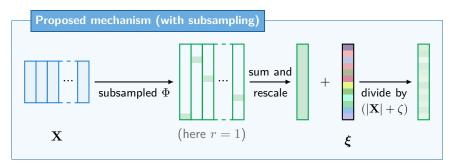
In the manuscript:

- ☑ analytical expression of the NSR;
- estimation of useful regimes;
- hyperparameter tuning.

An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

Subsampling

 \mathbf{Q} Compute only r < m features of Φ when sketching.



Goal 1: Reduce the computational complexity. **Goal 2:** Reduce the amount of released information.

Other approach in the literature: subsampling the **data records**. [Balle et al., 2018. "**Privacy Amplification by Subsampling**"]

Record subsampling vs feature supsampling

Lemma (Cf. manuscript)

Both types of subsampling "**do not improve** privacy" when properly rescaling the sketch. In most settings, they also "**do not reduce** privacy" (i.e. previous bounds remain valid).

Note: In spite of that, subsampling improves the complexity-privacy tradeoff.

Record subsampling vs feature supsampling

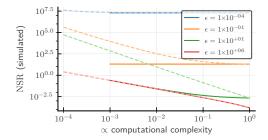
Lemma (Cf. manuscript)

Both types of subsampling "**do not improve** privacy" when properly rescaling the sketch. In most settings, they also "**do not reduce** privacy" (i.e. previous bounds remain valid).

Note: In spite of that, subsampling improves the complexity-privacy tradeoff.

Legend: — feature subsampling - - record subsampling

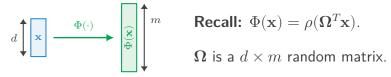
Observation: feature subsampling might in some regimes yield a better utility!



Efficient Sketching using Structured Matrices

An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

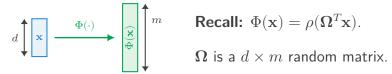
About computational efficiency



Recall:
$$\Phi(\mathbf{x}) = \rho(\mathbf{\Omega}^T \mathbf{x})$$
.

An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

About computational efficiency

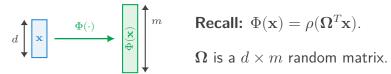


Recall:
$$\Phi(\mathbf{x}) = \rho(\mathbf{\Omega}^T \mathbf{x}).$$

 $\rightarrow \mathcal{O}(nmd)$ computational complexity when Ω is dense.

An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

About computational efficiency



Recall:
$$\Phi(\mathbf{x}) = \rho(\mathbf{\Omega}^T \mathbf{x}).$$

 $\rightarrow \mathcal{O}(nmd)$ computational complexity when Ω is dense.

 \bigcirc Use a structured matrix Ω .

Goals:

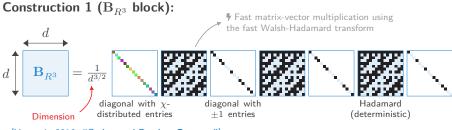
- Reduce the sketching/learning complexity (and runtimes).
- Reduce the storage cost.

Building a square structured block

Standard examples of square structured matrices: Vandermonde, circulant, **Walsh-Hadamard**...

Building a square structured block

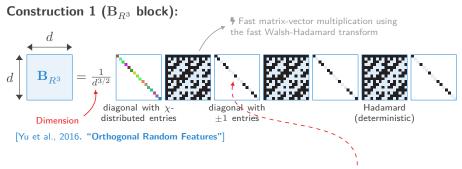
Standard examples of square structured matrices: Vandermonde, circulant, **Walsh-Hadamard**...



[Yu et al., 2016. "Orthogonal Random Features"]

Building a square structured block

Standard examples of square structured matrices: Vandermonde, circulant, **Walsh-Hadamard**...



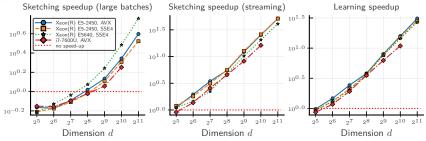
Construction 2 (B_{GR^2} block): use Gaussian values in the third matrix. (The normalization term must also be adapted.)

The matrix $\boldsymbol{\Omega}$ can be built by stacking such i.i.d. square blocks!

An Introduction to Large-Scale Learning	The Compressive Learning Framework	Privacy-Preserving Compressive Learning		Sketching using red Matrices		n: Summary rspectives
What do	we gain?			compressive k	-means"	
		Cł	٢M	Fast CKM		k-means
	Time	kd	$l^2(n+k^2)$	$kd\ln(d)(n +$	$k\ln(k)$	ndkI
la the end	Sketch	ing nk	kd^2	$nkd\ln(d)$		_
In theory:	Learnir	hg (CL-OMP(R)) k^3	d^2	$k^3 d \ln(d)$		_
	Space	kd	$l(d+n_b)$	kdn_b		nd
	Ω	kd	l^2	kd		_
	$\mathbf{\Omega}^T \mathbf{X}$	(by batch) kd	ln_b	kdn_b		_

An Introduction to Large-Scale Learning	The Compressive Learning Framework	Privacy-Preserving Compressive Learning		Sketching using red Matrices		n: Summary rspectives
What do	we gain?		• "C	ompressive k	-means"	
		CI	KM	Fast CKM		k-means
	Time	ka	$d^2(n+k^2)$	$kd\ln(d)(n +$	$k\ln(k)$	ndkI
المراجع والمراجع	Sketch	ing nl	kd^2	$nkd\ln(d)$		_
In theory:	Learnir	lg (CL-OMP(R)) k^3	$^{3}d^{2}$	$k^3 d \ln(d)$		_
	Space	ka		kdn_{b}		nd
	Ω	kc	d^2	kd		_
	$\mathbf{\Omega}^T \mathbf{X}$	(by batch) ka	dn_b	kdn_b		-

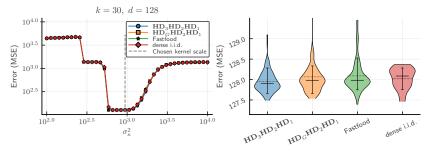
Speedup factors in practice:



Significative speed-ups, particularly for small batches (e.g. for learning).

An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

Impact on learning quality



(The 4 curves are all superimposed on the left).

[Le et al., 2013. "Fastfood: Approximating Kernel Expansions in Loglinear Time"]

Observations:

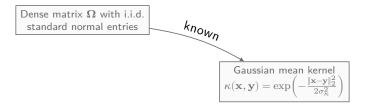
- No degradation of the overall performance.
- The median error is even slightly reduced when using structured operators.

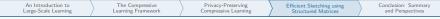
Some Theoretical Elements

Any distribution on Ω induces a mean kernel $\kappa(\mathbf{x},\mathbf{y}) = \frac{1}{m} \mathbf{E}_{\Omega} \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle.$

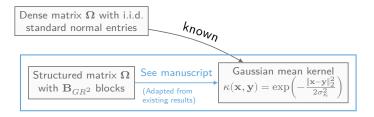


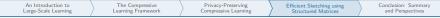
Any distribution on Ω induces a mean kernel $\kappa(\mathbf{x}, \mathbf{y}) = \frac{1}{m} \mathbf{E}_{\Omega} \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle$.



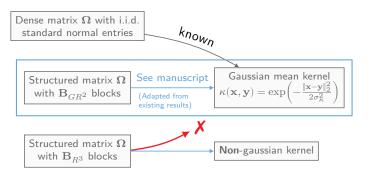


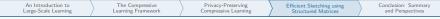
Any distribution on Ω induces a mean kernel $\kappa(\mathbf{x}, \mathbf{y}) = \frac{1}{m} \mathbf{E}_{\Omega} \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle$.



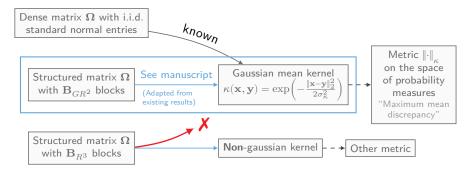


Any distribution on Ω induces a mean kernel $\kappa(\mathbf{x}, \mathbf{y}) = \frac{1}{m} \mathbf{E}_{\Omega} \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle$.





Any distribution on Ω induces a mean kernel $\kappa(\mathbf{x},\mathbf{y}) = \frac{1}{m} \mathbf{E}_{\Omega} \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle.$

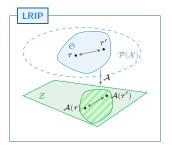


Towards Theoretical Guarantees

Goal: establish a lower restricted isometry property (LRIP) of the form

$$\forall \tau, \tau' \in \mathfrak{S}, \, \|\tau - \tau'\|_{\mathcal{L}(\mathcal{H})} \lesssim \|\mathcal{A}(\tau) - \mathcal{A}(\tau')\|_2$$

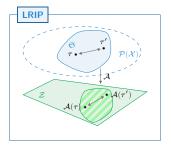
Low-dimensional model Metric related to the learning task [Gribonval et al., 2020. Compressive Statistical Learning with Random Feature Moments]



Towards Theoretical Guarantees

Goal: establish a lower restricted isometry property (LRIP) of the form

$$\begin{array}{c|c} \forall \tau, \tau' \in \mathfrak{S}, \|\tau - \tau'\|_{\mathcal{L}(\mathcal{H})} \lesssim \|\mathcal{A}(\tau) - \mathcal{A}(\tau')\|_{2} \\ \hline \\ \text{Low-dimensional model} \\ \hline \\ \text{[Gribonval et al., 2020. Compressive Statistical Learning with Random Feature Moments]} \end{array}$$



Strategy:

• Establish a LRIP for the metric $\|\cdot\|_{\kappa}$ associated to the **mean** kernel κ :

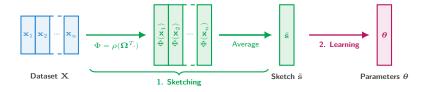
$$\forall \tau, \tau' \in \mathfrak{S}, \ \left\| \tau - \tau' \right\|_{\mathcal{L}(\mathcal{H})} \lesssim \left\| \tau - \tau' \right\|_{\kappa}. \qquad \overbrace{(\text{more technical for } \mathbf{B}_{R^3})}^{\text{for } \mathbf{B}_{GR^2}}$$

- Study the concentration of $\|\mathcal{A}(\tau) \mathcal{A}(\tau')\|_2$ w.r.t. $\|\tau \tau'\|_{\kappa}$.
 - Establish a pointwise concentration result. Stablish a pointwise concentration result.
 - Use covering arguments to get a uniform result.

Summary and Perspectives

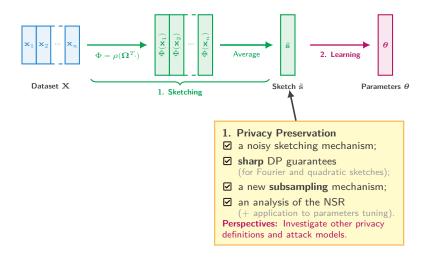
An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

Summary of contributions



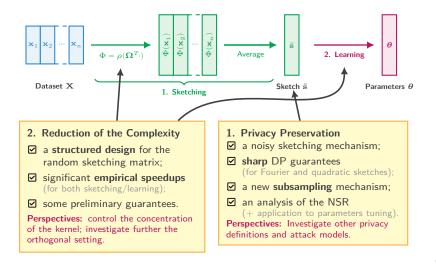
An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

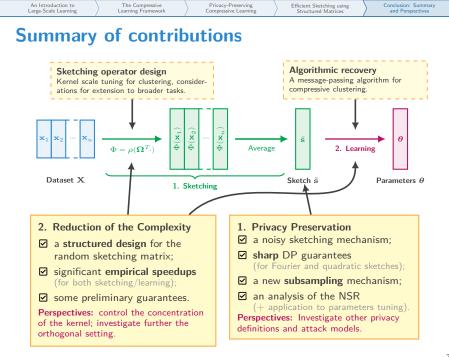
Summary of contributions



An Introduction to The Compressive Privacy-Preserving Compressive Learning Framework Compressive Learning Structured Matrices Compressive Learning	
--	--

Summary of contributions





An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

Perspectives

Directions for future work:

Handling new learning tasks.
 In particular, addressing supervised learning tasks.

(cf. Chapter 10 of the manuscript.)

Working with intermediate features
 ... starting with kernel k-means and kernel PCA!
 Akin to two-layers random neural networks.

Sketching structured data.
 E.g. graphs, images, etc.

Obtaining guarantees on the heuristics used for the inverse problem.

An Introduction to	The Compressive	Privacy-Preserving	Efficient Sketching using	Conclusion: Summary
Large-Scale Learning	Learning Framework	Compressive Learning	Structured Matrices	and Perspectives

List of publications

Privacy-preserving compressive learning

- Antoine Chatalic et al. "Compressive Learning with Privacy Guarantees". Submitted to Information and Inference (under review)., Mar. 3, 2020
- Vincent Schellekens et al. "Differentially Private Compressive K-Means". In: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). May 2019, pp. 7933–7937
- Vincent Schellekens et al. "Compressive K-Means with Differential Privacy". In: SPARS Workshop. July 1, 2019

Efficient compressive learning

- Antoine Chatalic et al. "Large-Scale High-Dimensional Clustering with Fast Sketching". In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2018
- Antoine Chatalic and Rémi Gribonval. "Learning to Sketch for Compressive Clustering". In: International Traveling Workshop on Interactions between Low-Complexity Data Models and Sensing Techniques (iTWIST). June 2020

Compressive clustering with message passing

Evan Byrne et al. "Sketched Clustering via Hybrid Approximate Message Passing". In: IEEE Transactions on Signal Processing 67.17 (Sept. 2019), pp. 4556–4569

Overview articles

- Antoine Chatalic et al. "Projections aléatoires pour l'apprentissage compressif". In: Gretsi. Aug. 26, 2019
- Rémi Gribonval et al. "Sketching Datasets for Large-Scale Learning (Long Version)". Aug. 4, 2020 (under review)

... and coding ... and teaching.

Thank you!