UNIVERSITE C
UNIVERSITE DE%

RENNES 1

THESE DE DOCTORAT DE

Rapporteurs avant soutenance:

Francis Bach Directeur de recherche - Inria Paris
Lorenzo Rosasco Full professor - University of Genoa

Composition du Jury:

Présidente: Magalie Fromont Renoir Professeure - Université de Rennes 2

Examinateurs: Francis Bach Directeur de recherche - Inria Paris
Lorenzo Rosasco Professeur - Université de Génes
Jamal Atif Professeur - Université Paris-Dauphine
Mike Davies Professeur - Université d’Edimbourg
Marc Tommasi Professeur - Université de Lille

Directeur de thése: Rémi Gribonval Directeur de recherche - Inria

Remerciements

HER lecteur, c’est peut-étre de la haine que tu veux que j'invoque

(< ‘ dans le commencement de cet ouvrage!». Que nenni, préci-

sons d’emblée qu'une thése peut se dérouler dans d’excellentes

conditions. C’est pourquoi quelques remerciements s’imposent avant
d’entrer dans le vif du sujet.

En premier lieu, j’adresse tout naturellement mais néanmoins sin-
cérement mes remerciements a Rémi Gribonval pour la qualité de
son encadrement tout au long de la thése et sa disponibilité. Ses com-
mentaires avisés ainsi que ses relectures détaillées furent d’une aide
précieuse, cela est certain; j’ai toutefois également été impressionné
par sa patience et son optimisme indéfectible; j'ai par ailleurs appré-
cié sa capacité a prendre rapidement du recul 1a ot1 jen manquais
cruellement — ce qui a certainement permis d’éviter quelques écueils.

Je souhaite remercier tous les membres du jury de m’avoir fait ’hon-
neur d’accepter d’évaluer mon travail, et en particulier Francis Bach
et Lorenzo Rosasco qui, en tant que rapporteurs, ont dii lire avec une
attention particuliére ce manuscrit.

Que Patrick Pérez et Frédéric Bimbot soient également remerciés
pour avoir, au sein du comité de suivi individuel doctoral, partagé
leur avis sur ’avancement des travaux et apporté un regard critique
complémentaire et bienvenu.

La partie III de ce manuscrit est le résultat d"une collaboration avec
Phil Schniter et Evan Byrne (Ohio State University) ; je les remercie
tous les deux de m’avoir accueilli pour quelques mois a Columbus, et
d’avoir pris le temps de répondre a toutes mes questions. Cette mobilité
a par ailleurs été possible grace au soutien financier de 'OSU et du
GdR MIA.

La partie IV est, elle aussi, le fruit d"une collaboration. J’adresse par
conséquent également des remerciements a Vincent Schellekens, avec
qui la discussion fut initiée a Peyresq, ainsi qu’a Florimond Houssiau et
Laurent Jacques avec qui ces travaux ont été réalisés. Ce fut un plaisir
d’avancer sur ce sujet en votre compagnie!

A Rennes, j’ai une pensée pour tous les panaméens qui ont su en-
tretenir la vie d’équipe, que ce soit d’un point de vue scientifique ou
simplement en contribuant a la bonne humeur générale. A cet égard,
nos voisins situés un peu plus loin dans le couloir ne sauraient étre
oubliés! C’est sans aucun doute a la cafétéria que la science se diffuse le
plus, et il convient donc de souligner I'importance des sempiternelles
discussions sur la nature du chocolat, les tenseurs de lapins, la beauté

des monades et la redynamisation de 1’eau par ondes cosmiques. Un
merci également & tous ceux qui ont donné du temps et de I'énergie
pour organiser la journée science et musique, car il y avait dans cette
initiative, il me semble, également beaucoup de bonne volonté et de
bonne humeur.

Bien entendu, je n‘oublie aucunement toutes les personnes avec qui
j’ai partagé de trés bons moments hors du labo pendant toutes ces
années, que ce soit en soirée a Rennes, a I'escalade, autour de jeux de
société, lors de concerts et de festivals en tous genres, ou encore d’esca-
pades improvisées aux confins de la Bretagne et au dela. Je n’égrénerai
pas vos noms ici, mais ne vous fourvoyez pas a croire que je vous oublie
car il n’en est rien, bien au contraire!

Je remercie ma famille pour le soutien constant qu’elle m’a apporté,
et pour avoir toujours mis toutes les chances de mon c6té pour que
je puisse parvenir jusque la; il semblerait que cela n’ait pas si mal
fonctionné.

Enfin, j’adresse un remerciement teinté de tendresse et d’admiration
a Katharina, avec qui j’ai partagé de nombreux moments ces derniéres
années, et qui m’a soutenu patiemment lors du confinement tandis
que je reformulais un nombre exagéré de fois les phrases des chapitres
a venir.

Résumé des travaux en francais

E DOMAINE de l'apprentissage automatique, qui s'intéresse aux tech-
niques permettant d’apprendre un modéle mathématique a
partir d’une collection de données, a connu des avancées ful-

gurantes ces derniéres décennies. Parmi les multiples facteurs ayant
concouru au développement de ces méthodes, I’augmentation dras-
tique des volumes de données produites, collectées et utilisées a des
fins d’apprentissage figure en bonne position. L'invention du micropro-
cesseur au début de la décennie 1970 et le processus de miniaturisation
qui s’en est suivi ont en effet permis une augmentation exponentielle
de la puissance de calcul disponible, mais également du nombre de
capteurs’ permettant d’enregistrer des données et des capacités de sto-
ckage. Le développement d’internet et de la toile en particulier ont, &
I'évidence, également contribué a accroitre les volumes de données dis-
ponibles, et donc la pertinence statistique des modeles mathématiques
qui en sont issus.

Toutefois, et en dépit des progres matériels?, ’apprentissage a par-
tir de vastes volumes de données reste une opération cofiteuse en
temps comme en énergie, et qui requiert des investissements impor-
tants. Ce manuscrit s'intéresse a ’apprentissage compressif, une tech-
nique introduite il y a quelques années3 qui consiste & compresser
I'ensemble des données avant apprentissage. Plus précisément, le jeu
de données utilisé, que nous représentons ici comme une matrice
X = [Xq,...,%,] € R¥”" dont les colonnes correspondent a n obser-
vations numériques en dimension d, est compressé en une unique
empreinte de la forme

=10 (1)

ot1 la fonction ¢ est adaptée a la tAche d’apprentissage considérée, mais
typiquement non linéaire et aléatoire. Un intérét particulier est porté
aux fonctions de la forme ® : x = p(Q27x) € R™ ou C™, o1 Q& € R>™
est une matrice aléatoire4, et la fonction p est scalaire, déterministe
et appliquée point a point. Le vecteur § peut alors étre vu comme
une collection de moments généralisés et aléatoires des données. Un
exemple important consiste a choisir p = exp(:-) (ot1¢ = v/—1), auquel
cas I'empreinte correspond a des échantillons aléatoires de la fonction
caractéristique empirique des données>.

En apprentissage statistique, une tiche d’apprentissage est repré-
sentée par une fonction de risque R(h, 7), qui mesure 1'inadéquation
du modele mathématique h vis-a-vis de la distribution de probabi-

Note: This part contains a sum-
mary in french of the manuscript.
The rest of the document is written
in english, and the introduction can
be found in Chapter 1.

' Au sens large : instruments industriels
et scientifiques comme le LHC, ou en-
core terminaux mobiles multifonctions
et appareils photos numériques, dont la
démocratisation a aidé a perfectionner
les techniques de vision par ordinateur.

? Augmentation des capacités de calcul a
colit énergétique ou monétaire constant.

3 L’obtention de garanties d’apprentis-
sage est récente, bien que des techniques
plus anciennes telles que la méthode des
moments généralisés [1] continssent déja
des idées semblables.

4La matrice 2 est tirée aléatoirement,
mais une unique fois et avant compres-
sion, de sorte a ce que tous les échan-
tillons x; soient compressés de la méme
maniere.

5Et donc de la transformée de Fourier
(inverse) de la densité de probabilité,
lorsque celle-ci existe.

lité 7 pour la tache en question. Résoudre le probléme d’apprentis-
sage revient donc a trouver un minimiseur du risque, le plus sou-
vent au sein d’une famille de modeéles #, i.e. on cherche a trouver
h* e argmin,_,, R(h,). La distribution sous-jacente 7 des données
est en général inconnue, mais il est en revanche possible d’utiliser la

i=1 Y%,

rées, c’est a dire d’essayer de résoudre le probleme d’optimisation

distribution empirique 7x = ~ 3.7 | d, associée aux données mesu-
n

min,,,, R(h, mx); on parle alors de minimisation du risque empirique.

Toutefois, évaluer R(h, 7x), méme pour un unique modele h € H,
nécessite de parcourir les données dans leur intégralité, ce qui est
coliteux et limite fortement 1'utilité de cette méthode en pratique. Avec
I'approche compressive, 'apprentissage est effectué en substituant
a la fonction de risque R(-, 7x) un succédané f(-,s) dans lequel les
données n’interviennent qu’exclusivement via le vecteur §. Dés lors,
il est seulement nécessaire de calculer ’empreinte §, suite a quoi les
données peuvent étre oubliées. D’autre part, la forme simpliste du
sketch (1) en rend le calcul hautement parallélisable, et compatible
avec des données déja distribuées ou méme en flux®.

Cette approche a déja été utilisée avec succes pour le probléeme de
partitionnement type k-moyennes [2], pour la modélisation de densité
avec modele de mélange gaussien [3, 4], ainsi que pour l’analyse en
composantes principales. Des garanties d’apprentissage statistique”
ont été établies pour ces trois probléemes [5, 6].

Cette thése propose d’étendre le cadre de I’apprentissage compressif
dans plusieurs directions : 1’étude du choix de la matrice aléatoire €2, et
notamment la proposition d’utiliser des matrices structurées afin d’ac-
célérer la complexité du mécanisme dans son ensemble; la proposition
d’un nouvel algorithme pour l’apprentissage a partir de I'empreinte
pour le probléme de partitionnement; et enfin l'introduction d’un mé-
canisme de compression légerement modifié pour lequel des garanties
de confidentialité peuvent étre obtenues. Nous proposons de résumer
ces contributions principales en suivant l'organisation du manuscrit.

Partie I La premiere partie de ce manuscrit propose un apercu de la
littérature existante sur le sujet de I’apprentissage a grande échelle.

» Le chapitre 2 introduit le domaine de l’apprentissage compressif,
en partant de la technique d’acquisition comprimée qui en fournit
I'inspiration. L’empreinte d'un jeu de données étant constituée
d’un ensemble de moments, elle peut s’exprimer comme l'appli-

®(x) ala distribution

empirique 7y du jeu de données. La tache d’apprentissage peut

cation de l'opérateur linéaire A : 7 = E,
alors étre formulée comme un probléme linéaire inverse sur un
espace de distributions de probabilités, pour lequel des garanties
théoriques peuvent étre obtenus lorsque A satisfait une inégalité
d’isométrie restreinte. Quelques outils théoriques liés aux espaces
de Hilbert a noyaux reproduisants sont également introduits afin
d’éclairer la construction de la fonction .

= Dans le chapitre 3, nous proposons une vue d’ensemble des autres

¢ C’est-a-dire, on peut trés bien calculer
I'empreinte d"un flux de données en com-
pressant les éléments au fur et a mesure
qu'ils arrivent.

7 Ces garanties portent sur le controle du
risque, en supposant que le probléeme
d’optimisation peut étre résolu. Ce der-
nier étant généralement non convexe, di-
verses heuristiques sont utilisées pour le
résoudre de maniere approchée, et peu
de garanties existent sur ces heuristiques.

types d’approches pour 'apprentissage automatique efficace a
grande échelle, en grande dimension et/ou sur des données en
flux. Plusieurs exemples d’empreintes classiques pour I’estimation
de fréquences sur de grands volumes de données sont évoqués,
en partant de méthodes proposées au siécle dernier dans la com-
munauté des bases de données. Les méthodes de réduction de
dimensionalité sont ensuite introduites, avec un intérét particulier
porté sur les méthodes linéaires stochastiques et agnostiques vis-
a-vis des données, de type Johnson-Lindenstrauss. La notion de
coreset® est définie, et 'utilisation du sous-échantillonnage pour la
production de coresets est discutée. Enfin, plusieurs algorithmes
stochastiques pour l’algébre linéaire et en particulier I’approxima-
tion de faible rang sont présentés.

Partie II Dans la seconde partie, nous étudions le réle de la distri-
bution de la matrice aléatoire €2, qui était dans les travaux précédents
toujours tirée avec des entrées indépendantes et identiquement distri-
buées (i.i.d.) gaussiennes. Si les colonnes (w;);;<,, de 2 sont décom-
posées de la forme w; = R;p, pour touti € {1,...,m}, ottles (R;), <<,
sont des rayons et les (¢;);;<,, des vecteurs sur la sphére unité, nous
proposons deux contributions distinctes, l'une relative a la distribution
radiale des (R;),,,, dans le cas du probléme de partitionnement, et
I’autre relative a la distribution directionnelle des (¢;);;,, et qui peut
s’appliquer a diverses taches d’apprentissage.

= Le chapitre 4 s'intéresse au probléme de partitionnement compres-
sif uniquement, pour lequel p = exp(:-), et souligne expérimen-
talement I'importance de bien choisir la distribution radiale de
R,,...,R,,. Les contributions sont de nature empirique, et mettent
en évidence le lien existant entre le choix de 1’échelle de la distri-
bution radiale et la séparation (c.-a-d. la distance minimale) entre
les différents groupes a identifier.

* Le chapitre 5 a l'inverse, suppose qu'une bonne distribution ra-
diale est connue, et s’intéresse au choix de la distribution des
vecteurs ¢, ..., p,,, ¢'est-a-dire a la distribution directionnelle. En
particulier, il est suggéré que ces vecteurs peuvent étre générés de
maniére corrélée par blocs afin de réduire la complexité algorith-
mique du processus de compression — et donc d’apprentissage
puisque le succédané f(-,S) requiert également d’évaluer 'opé-
rateur A. Cette réduction du cotit est obtenue en construisant
comme une juxtaposition de blocs carrés faisant intervenir des
matrices structurées de type Walsh-Hadamard, pour lesquelles
des algorithmes de multiplication rapide existent. Une validation
expérimentale de la méthode est proposée, et les problémes res-
tants en vue de l'obtention de garanties théoriques sont identifiés
et discutés.

Partie III Constituée d’un unique chapitre, la troisieme partie se
concentre encore une fois sur le probléme de partitionnement de type

8 Un coreset est un sous-ensemble du jeu
de données pour lequel l'erreur d’ap-
prentissage reste proche de 'erreur me-
surée sur le jeu de données entier.

k-moyennes, ot l'on cherche a apprendre la position spatiale de k
points correspondant aux centres des k groupes — chaque donnée x;
appartenant alors implicitement au groupe lié a celui des & points dont
elle est le plus proche.

* Le Chapitre 6 introduit un algorithme permettant de retrouver
ces k points a partir de I'empreinte S. Cette derniére est calculée
via la méme fonction ® que dans les contributions précédentes [2],
mais l'algorithme differe des précédentes approches car il repose
sur des méthodes de propagation de convictions. Cette famille
de méthodes et notamment les algorithmes par passage de mes-
sages sont introduits, puis nous montrons comment le probléme
de partitionnement compressif peut se réécrire? sous la forme d'un
probléme d’inférence bayésienne, qui peut étre abordé avec de tels
algorithmes moyennant quelques approximations. Quelques para-
metres du modeéle doivent étre réglés, et nous montrons comment
cela peut étre effectué simultanément'® au déroulement de I'al-
gorithme de passage de messages. Nous évoquons les problémes
d’approximation numérique qui peuvent survenir, et proposons
une validation expérimentale de la méthode, a la fois sur des
données synthétiques et réelles. Ce chapitre est le fruit d"une col-
laboration, et ma contribution réside principalement dans la mise
en ceuvre expérimentale de la méthode.

Partie IV La derniere partie du manuscrit étudie 1'intérét de 'ap-
proche compressive pour 1’apprentissage avec garanties de confiden-
tialité, ce qui s’avere étre un critere essentiel lorsque 'on souhaite
apprendre un modele a partir de données a caractere personnel.

* Le chapitre 7 introduit le formalisme de la confidentialité diffé-
rentielle, ainsi que les méthodes classiques permettant d’adapter
un algorithme préexistant au moyen d’une perturbation aléatoire
additive pour qu'il satisfasse cette définition. Une vue d’ensemble
des autres techniques permettant de satisfaire la propriété de confi-
dentialité différentielle est également proposée pour les taches de
partitionnement et d’analyse en composantes principales.

= Dans le chapitre 8, nous introduisons un mécanisme de compres-
sion bruité, et nous nous intéressons au niveau de bruit mini-
mum a ajouter permettant d’obtenir un niveau de confidentialité
(différentielle) donné. Cette étude est effectuée pour deux types
d’empreintes en particulier, et donne des garanties pour les pro-
blemes de partitionnement et d’analyse en composantes princi-
pales. Une variante de cet algorithme adjoignant au bruit additif
un mécanisme de sous-échantillonnage des contributions' liées
aux différents échantillons du jeu de données est également étu-
diée, permettant ainsi de contrdler plus finement le compromis
entre confidentialité, efficacité et qualité de ’apprentissage.

* Enfin, nous montrons expérimentalement dans le chapitre 9 que la
qualité d’apprentissage a partir d"une empreinte bruitée est forte-
ment corrélée au rapport signal sur bruit*?. Nous proposons donc

?Sous I'hypothése de données générées
suivant un modele de mélange gaussien.

*° Plus précisément, de maniere entrela-
cée puisque nous alternons les itérations
des deux méthodes.

“ie. seulement quelques entrées de
®(x;) sont calculées pour chaque x;,
mais tous les échantillons (X;)<;<,
entrent en compte dans le calcul de I'em-
preinte.

2C’est a dire le rapport entre I'énergie
du bruit ajouté pour obtenir la garantie
de confidentialité, et I'énergie de 1'em-
preinte non bruitée.

d’utiliser cette quantité, pour laquelle une expression analytique
est fournie, comme un critére permettant de guider le choix des
différents parametres du modele. Les performances des méthodes
introduites sont également mesurées expérimentalement pour
les probléemes de partitionnement et d’analyse en composantes
principales, et comparées a d’autres méthodes de I’état de l’art.

Certaines définitions et preuves sont omises des chapitres et pro-
duites en annexes A.1, B et C. Quelques considérations sur I'implémen-
tation des diverses méthodes sont également proposées en Annexe D.

Contents

1 INTRODUCTION 17

1.1 Problem overview 18
1.1.1 A statistical approach to machine learning 19
1.1.2 Challenges of modern data collections 21

1.2 The compressive learning approach 24

1.3 Contributions 26
1.3.1 Layout and summary of contributions 26

1.3.2 List of publications 28

I ExisTING TOOLS FOR LARGE-SCALE LEARNING 31

2 A Gumpep Tour oF COMPRESSIVE LEARNING 33

2.1 A learning framework rooted in compressive sensing 33
2.1.1 Compressive sampling strategies 34
2.1.2 Algorithms for the inverse problem 35
2.1.3 Measurement operators design 36
2.1.4 Generalization to low-rank matrix recovery 38
2.1.5 Sketches as linear distribution embeddings 39
2.2 Recovery guarantees using ideal decoders 4o
2.2.1 Instance-optimal decoders and control of the excess risk 40
2.2.2 Generalization to semi-parametric models 42
2.3 Sketching operator design using kernel methods 43
2.3.1 Measuring similarity with kernels 44
2.3.2 Finite-dimensional feature maps for kernel approximation 45
2.3.3 Extension to distributions and mean embeddings 47
2.3.4 Tools for the lower restricted isometry property 49
2.4 Algorithms to learn from the sketch 50

2.5 Learning tasks with known compressive approaches 52

12

3 LARGE-ScaLE LEARNING: RELATED WORK 57

3.1 Approximate query processing over data streams 58
3.1.1 Approximate estimation 58
3.1.2 Linear sketches for frequency moments 59
3.2 Dimensionality reduction techniques 60
3.2.1 Data-agnostic approaches 60
3.2.2 Adaptive approaches 61
3.3 Reduction of the number of samples 63
3.3.1 Coresets 63
3.3.2 Subsampling 65
3.4 Randomized linear algebra 68
3.4.1 Randomized low-rank factorization 68
3.4.2 The case of positive semi-definite matrices 70

3.5 Conclusion 73

II Erricient COMPRESSIVE LEARNING 75

4 LEARNING TO SKETCH WITH A GAUsSIAN KERNEL 77

4.1 Role of the kernel scale 77
4.1.1 Theoretical insights 78
4.1.2 An illustration with CL-OMPR 78
4.1.3 Existing heuristics 8o
4.2 Experimenting with synthetic datasets 81
4.2.1 Impact of the sketch size 81
4.2.2 Scale-invariance 82
4.2.3 Impact of the separation between clusters 83
4.2.4 Impact of the dimension 84
4.2.5 Impact of k 84
4.2.6 Impact of the frequency distribution 86
4.3 Towards empirical estimation of the separation 88

4.4 Perspectives 9o

5 HIGH-DIMENSIONAL SKETCHING WITH STRUCTURED LINEAR OPERATORS 91

5.1 Literature on structured transforms 92

5.1.1 Factorization approaches 92

5.1.2 Families of linear operators based on known structured blocks 92
5.2 Construction 94

5.2.1 Decoupling radial and directional distributions 95

5.2.2 Construction of a square block 95

5.2.3 Extension to arbitrary dimensions 97

5.2.4 Comparison of the costs 98
5.3 Experimental validation 99

5.3.1 Runtime speedup 99

5.3.2 Clustering performance 102

5.3.3 Hierarchical clustering on a co-purchasing graph 105
5.4 Towards theoretical guarantees 107

5.4.1 Adapting existing results 107

5.4.2 Induced kernels 109

5.4.3 Concentration 112

5.5 Perspectives 114

I CompressiveE CLUSTERING WITH MESSAGE PAsSING 115

6 CoMPRESSIVE CLUSTERING WITH APPROXIMATE MESSAGE PASsING 117

6.1 An introduction to Approximate Message Passing 117
6.1.1 Probabilistic model and factor graph for linear regression 118
6.1.2 The sum-product algorithm 119
6.1.3 Approximate message passing 120
6.2 Compressive clustering as a high-dimensional inference problem 122
6.2.1 Model of the sketch 123
6.2.2 Bayesian formalism 124
6.3 Inference of the centers using GAMP 124
6.3.1 From GAMP to SHyGAMP 125
6.3.2 Solving the remaining inference tasks 126
6.3.3 Hyperparameters learning 129
6.3.4 Initialization and main algorithm 130
6.4 Experimental results 131
6.4.1 Synthetic data 131
6.4.2 Real datasets 133
6.5 Perspectives 135

IV ComPRESSIVE LEARNING WITH PRIVACY GUARANTEES 137

7 INTRODUCTION TO DIFFERENTIAL PrR1ivACY AND RELATED WORK 139

7.1 Attack model 140
7.2 Definition and properties 140
7.2.1 Neighboring relation 141

7.2.2 Composition properties 142

13

14

7.2.3 Alternative privacy definitions 143

7.3 Standard perturbation mechanisms for differential privacy 143
7.3.1 The Laplace mechanism 1473
7.3.2 Approximate Differential Privacy and the Gaussian Mechanism 145

7.4 Private methods for the considered learning tasks: related work 147

8 DIFFERENTIALLY PRIVATE SKETCHING 149

8.1 Privacy with noisy sketches 149
8.1.1 Private Sketching with the Laplace Mechanism 150
8.1.2 Approximate Differential Privacy with the Gaussian Mechanism 155
8.1.3 Computation of the bounds for quadratic features 156
8.2 A faster mechanism with frequency subsampling 158
8.2.1 Random Fourier Features 162
8.2.2 Compressive principal component analysis 163

8.2.3 An Upper Bound for Approximate and Bounded Differential Privacy 165

9 UrtiLity GUARANTEES UNDER DIFFERENTIAL PrIvACY 169

9.1 Assessing utility with the noise-to-signal ratio 169
9.1.1 The role of the noise-to-signal ratio 170
9.1.2 Analytical estimation of the noise level 171

9.2 Hyperparameters tuning using the SNR 173
9.2.1 Comparison of the two subsampling strategies 1773
9.2.2 Regimes combining privacy and utility 174
9.2.3 A Heuristic for Privacy Budget Splitting (Laplacian Noise) 176
9.2.4 Choice of the Sketch Size 177

9.3 Experimental validation 178
9.3.1 Clustering 178
9.3.2 Principal component analysis 181

9.4 Discussion and perspectives 184

V PerspecTIvEs 187

10 TOWARDS HANDLING BROADER FAMILIES OF COMPRESSION-TYPE TASKS 189

10.1 Working with projective losses 190
10.1.1 Projection onto closed convex sets 191
10.1.2 Handling unions of convex sets 193
10.2 Implications for the lower restricted isometry property 198
10.2.1 Regularity of the sketching operator 198
10.2.2 Implications for the LRIP 198

10.3 Summary 203

11 CONCLUSION 205

11.1 Summary of the contributions 205
11.2 Future work 207
11.2.1 Short-term perspectives 207

11.2.2 Research directions for future work 207

VI ApPENDIX 211

A GENERIC TOOLS 213

A.1 Reminder on measures 213

A.2 Semi-norms on the space of finite signed measures 214

B DEerivations For CL-AMP 215

B.1 Posterior mean and covariance of z 215

B.2 Approximation of the sum 217

C Privacy Proors 219

C.1 Results on Nonresonant Frequencies 219
C.2 Results without subsampling 220
C.3 Proofs on Sketching with Subsampling 221
C.3.1 General results 221
C.3.2 Random Fourier Features 224
C.4 Derivation of the noise-signal ratio 225

C.5 Heuristic for Splitting the Privacy Budget 231

D IMPLEMENTATION DETAILS 233

D.1 The CompressiveLearning package 233
D.2 The FatDatasets package 233

D.3 The PrivateClustering package 234
D.4 The PrivatePCA package 234

D.5 The Batchlterators package 235

D.6 The ExperimentsManager package 235
D.7 The Igrida package 235

15

16

NOTATIONS

We summarize here the notations used throughout the paper.

Mathematical notations

Notation Meaning
O(), ©(-), Q(-) Landau asymptotic notations
[n,m] Setof integers between n and m (included)
= Variable definition
& Definition of a probability density function up to normalization
N Inequalities up to a constant factor
S4=1 " Unit sphere in R? (for the I,-norm)
AT Transpose of A
A" Hermitian (conjugate) transpose of A
M, T Real and imaginary parts
I, Identity matrix of size d x d
®;, ® Kronecker product, Outer product
O(d) Real orthogonal group
iid. identically and independently distributed
w.h.p. with high probability
w.lo.g. without loss of generality
psd positive semi-definite
I-lo ! vector pseudo-norm (number of nonzero entries)
I 1lv, <12 ! and I, vector norms
(-»)p | -l Frobenius (matrix) inner-product and norm
| -] Spectral (matrix) norm
I-1,., I, 1I,operator (matrix) norm
N(p,¥) Multivariate normal distribution with mean p and covariance X
L (b) Centered Laplace distribution
£E(b) Centered complex Laplace distribution (Definition 7.7)
Bern (p) Bernouilli distribution with parameter p
U(S) Uniform distribution on S (when properly defined)

Conventions regarding variable names

Notation

Meaning

Dimension of the data samples

Dataset size (number of samples)

d
n
k Number of components in a mixture, number of clusters for k-means
m Sketch size

¥, Set of s-sparse vectors

® Feature map

Random Fourier feature map (cf. Definition 2.5)
Random quadratic feature map (cf. Definition 2.6)

A Sketching operator (cf. (2.10))

Chapter 1
Introduction

HE AMOUNT of digital data which is produced, transmitted, stored
and processed each day has never stopped growing in the last
centuries. The early days of computing are often dated circa 1837,

with Charles Babbage’s analytical engine which is the first design of a
generic Turing-complete' computer, and Ada Lovelace’s notes which
contain what is considered as the first computer program [7]. But at
the time, and even in the following century when first computers were
successfully built — the analytical engine was never finalized —, both
speed and memory were quite limited by today’s standards. For in-
stance, the Z3 of Konrad Zuse, completed in 1941, had only 64 memory
words of 22 bits each; program memory was made of punched tape,
following Babbage’s ideas, and a multiplication took in average three
seconds. These computers, albeit being programmable, were dedicated
to specific engineering tasks or cryptography.

Although the computer science discipline was created and devel-
oped in the following decades, with already many significant theoreti-
cal contributions, the biggest game changer was certainly the invention
of metal-oxide-silicon field-effect transistors (MOSFET), which led to
the development of microprocessors and memory chips, opening the
way for mass production of personal computers, embedded devices,
and smartphones. This multiplication of the number of devices able
to capture and process external data, together with the exponential®
growing of computational power and the increasing availability of
permanent storage (hard drives), led us quickly where we stand now:
massive amounts of digital data are produced every second — not only
by individuals, but also for instance by sensor networks or scientific
devices —, transmitted via telecommunication infrastructures, stored
in gigantic datacenters across the world, and processed, possibly using
massively parallel supercomputers.

The domain of artificial intelligence (AI), which encompasses all
endeavors towards designing machines or programs able to mimic, to
some extent, cognitive functions of human beings such as perception,
reasoning or learning, flourished in the last decades partly because
of this evolution. Despite significant early developments in the mid-
fifties, the discipline did not grow as fast as initially envisioned by
some researchers3. But with larger and larger data collections available
over the years and growing calculation capacities, it became easier to
build and train new powerful models, leading to many consecutive

Contents

1.1 Problem overview 18
1.1.1 A statistical approach to machine
learning | 1.1.2 Challenges of modern
data collections

1.2 The compressive learning ap-
proach 24

1.3 Contributions 26
1.3.1 Layout and summary of contribu-
tions | 1.3.2 List of publications

*i.e. which is expressive enough to simu-
late a Turing machine.

* According to Moore’s law [8], the tran-
sistor density (for which the production
cost per transistor is minimum) used to
double every two years at the time. Den-
nard scaling law [9] moreover states that
each step in this miniaturization process
came with roughly a 40% increase of cir-
cuits’ frequency, and a constant power
consumption per surface unit. It is worth
noting, however, that production costs
have also been growing exponentially
(Moore’s second law).

3 e.g. Marvin Minsky, considered as one
of the fathers of Al, in 1970: “In from
three to eight years we will have a ma-
chine with the general intelligence of an
average human being.” (Life Magazine).

18

successes, first in the nineties — for instance in 1997, with the victory
of the Deep Blue Al over Garry Kasparov at chess —, and in the last
decade with deep and convolutional neural networks# — that improved
drastically machine performance on multiple learning tasks, especially
in computer vision and natural language processing. All these meth-
ods, which “learn” the parameters of a mathematical model using large
collections of empirical data, form the research area of “machine learn-
ing”, which can be seen as a sub-field of artificial intelligence. Needless
to say, applications go way beyond the examples given above as, by
definition, such techniques can be used in pretty much any domain
where data is available.

However, building efficient and lightweight machine learning al-
gorithms remains a challenge. The size of datasets used to train the
models has grown at the same rate, if not faster, than computational ca-
pacities, and most traditional learning techniques simply cannot scale
to the largest existing collections. Most of the numerous successes
witnessed so far, and especially the ones based on deep architectures
in the last few years, require tremendous resources: powerful com-
puters or supercomputers®, specialized graphical or tensor processing
units, large storage capacities and, naturally, substantial engineering
and research capacities as well. Beyond deeper problems coming with
these constraints, such as the growing difficulty for academic or smaller
actors to compete with a few major players, a maybe more fundamen-
tal observation is that these learning approaches are very expensive,
especially energetically.

A simple way to address this problem is to somehow compress the
learning collections. By doing so, we reduce the amount of stored
data, make it easier — or at least faster — to process the remaining
information, and make it possible to tackle with limited resources
problems on large datasets that simply are untractable otherwise. This
thesis focuses on one such approach, called compressive (or sketched)
learning, which maps a whole training collection to a single vector
summarizing some useful statistics of the data distribution.

In this introduction, we propose to formalize the key concepts of
machine learning, and explain further why traditional approaches
are often not helpful in the large-scale setting (Section 1.1). A quick
overview of compressive learning is provided in Section 1.2, and the
main contributions of the thesis are summarized in Section 1.3.1.

1.1 PROBLEM OVERVIEW

In order to compare different learning techniques, we need to define
more precisely the issue to be solved. Machine learning actually covers
many different problems, that are also called learning tasks. Three
examples of such tasks are represented (in dimension 2) in Figure 1.1,
where the blue points represent the data samples, and the learned mod-
els are depicted in purplish red. Without going too much in the details,
principal component analysis (PCA) aims at finding the subspace
which somehow best “fits” the data; k-means clustering consists in

4 These are classes of mathematical mod-
els, combining parametric linear opera-
tions and simple non-linear (most often
deterministic) transformations. These
models are highly expressive, but also
difficult to train due to the very large
number of parameters they induce.

5 Supercomputers are computers which
can perform much more floating-point
operations per seconds (FLOPS) than a
“standard” computer, and are widely use
in computational science.

finding a set of k points which cover the different clusters of the dataset;
the goal of Gaussian modeling is to find, in the model of Gaussian
mixtures, the distribution whose density (represented with isolines
on Figure 1.1) best fits the observed data. For each of these examples,
one wants to identify in a predefined family of acceptable models, the
one that best explains or summarizes the observed data. Statistical
learning is a convenient framework to tackle all these tasks and more
under a common formalism. Its basic concepts are introduced in Sec-
tion 1.1.1, and we discuss the different challenges to take into account
in Section 1.1.2.

1.1.1 A statistical approach to machine learning

Throughout this thesis, we always work with numerical features, i.e.
the datasets we consider are collections of vectors in X = R?. Unless
otherwise specified, we always denote d the dimension of the data
samples and n the number of samples in the collection. Any dataset
X = [xq, ..., X,,] can be represented by its associated empirical distribu-
tion, that we denote 7 = % i1 0x., where 4, is the Dirac measure
located at x. We refer the reader to Appendix A.1 for some standard
definitions related to measure theory.

The concepts of “learning task” and “model” used above can be
formalized in the statistical learning framework. In this context, a
model is referred to as an hypothesis, and we denote H the hypothesis
space, i.e. the class of all considered models. It will typically be a
parametrized family. A learning task is defined by a loss function
l:H x X — R. Intuitively, the quantity /(h, x) characterizes how “bad”
the hypothesis h is with respect to the data sample x for this learning
task. Any loss function naturally extends® to probability distributions
via its associated risk function R : # x P(X) — R, defined for any
probability distribution 7 as

R(h,7) 2 E,_I(h,x). (1.1)

X~

where P(X') denotes the set of probability distributions over X'.

Some classical learning tasks Learning problems of very different
natures can be written using the formalism of loss and risk functions.
The most iconic learning task is maybe classification”, where one has
a collection of data samples in X’ and associated labels, and wants to
learn to predict labels for new data samples. We discuss this problem
just below, but we first introduce the loss functions corresponding
to the three tasks represented in Figure 1.1. These tasks will play an
important role in this thesis for the simple reason that it is known that
they can be addressed using compressive methods.

Let us first consider the example of principal component analysis,
depicted on the top of Figure 1.1. The hypothesis one wants to recover
is in this case a linear subspace of X (we assume centered data for
simplicity).

19

Principal component analysis

k-means clustering

g

Gaussian modeling

Figure 1.1: Examples of learning tasks:
PCA (top), k-means clustering (middle),
and density estimation with a Gaussian
mixture model (bottom). Data points
are represented in blue, and the learned
model (the hypothesis) in purplish red.

® We assume for conciseness that the cho-
sen loss functions are always integrable,
i.e. that (1.1) is always defined

7 To be more precise, supervised classifi-
cation, as explained below.

20

Definition 1.1 (PCA): Let k € IN. Principal component analysis
consists in finding a linear k-dimensional subspace h of X’ such
that the orthogonal projection I, on A minimizes the risk induced
by the loss function

Ipca(h, %) £ |x — HhX”g- (1.2)

The loss induced by a sample that does not belong to h is thus simply
its squared distance to & (e.g. in Figure 1.1, the squared distance to
the purple line), and only the risk of probability distributions that are

supported on a k-dimensional subspace vanishes for some subspace h.

The two other problems that will be discussed extensively are k-means
clustering and Gaussian modeling.

Definition 1.2 (Clustering): k-means clustering consist in find-
ing a set h of k € N points h = {cq, ..., ¢, } C X minimizing the
risk induced by the loss function

A T
haa(h, %) = min [x — ¢ (13)
Definition 1.3 (Gaussian ~ modeling): Gaussian mix-

ture modeling aims at finding the parameters h =
{(@i)icichs (Co)1<ich (Bi)1<ick) of the Gaussian mixture
model with density pj,(x) = >, ;. @;N(x;¢;, 3;) minimizing
the risk induced by the loss

lu(h, x) = —log pj,(x). (1.4)

The k-means clustering problem is NP-hard® [10], and heuristics

such as Lloyd’s algorithm [11] are traditionally used when possible.

Many different variants and extensions exist [12], as clustering is a
core component of many learning frameworks. Similarly, Gaussian
mixtures are ubiquitous models; the de-facto approach to learn the
parameters is the EM algorithm [13].

Supervised learning The three tasks presented above belong to the
group of unsupervised learning problems, by opposition to supervised
problems where the data points in the training collection come with
additional observations or labels. A standard example is supervised
classification, where each sample comes with a category membership
indication, and one can take these indications into account to better
train the considered model. In that case, the loss function is of the

form!: H x (X x V) — R, where Y is the finite set of possible labels.

The relevance of a classifier f : X —)Y = {1, ..., ¢} can for instance be
measured with the o-1 loss function

lo1(fs(x,9) =]lf(x):y (1.5)

where 1, takes the value 1 when the boolean expression b holds, and 0
otherwise. The function f plays here the role of the hypothesis, and

8i.e. atleast as difficult as any problem in
the NP (non-deterministic polynomial-
time) complexity class.

should be selected in a well-chosen class — i.e., expressive enough but
not too large.

Another standard supervised task is regression, where) is contin-
uous (typically Y = R), and one wants to learn a function f which
predicts the quantity y from the observation x. Many variants of the
problem exist, but if we restrict f to the class of linear functions, and
measure the error with the squared loss, we get the well known linear
least squared problem?.

Definition 1.4: Linear least squares aims at finding a vector h
R? minimizing the risk induced by the loss

ls(h, (x,9)) = (x"h —y)*. (1.6)

We will come back to these different tasks in the following chapters,
and in particular to the three unsupervised tasks. For now, we simply
assume having a task defined by an explicit loss function, and consider
solving it using a given dataset.

Risk minimization Inmost situations, the samples of X are assumed
to be independent and identically distributed (i.i.d.) according to some
distribution 7. Solving a learning task defined by a risk function R
hence amounts to find

h* € argmin R (h, 7). (1.7)
heH
However, the distribution 7 is unknown in practical applications and
one cannot access directly R(-, 7). A more realistic goal is thus to learn
from X an hypothesis h for which the excess risk

AR(h,7) 2 R(h,7) — R(R*,) (1.8)

is small, as shown in Figure 1.2. A natural approach to do so is to
directly solve

1’}213‘1_?[17%(]1, 7TX>7 (19)

which is known as empirical risk minimization. This generic formula-
tion of the problem can naturally call for very different optimization
tools. For instance, the risk minimizer for PCA has a closed form (the
subspace spanned by the first eigenvectors of the covariance matrix),
whereas minimizing the risk for k-means clustering is NP-hard, and
iterative heuristics such as the k-means algorithm are widely used [14].
As a consequence, we do not focus for now on how to solve (1.9) in prac-
tice, but simply note that the quantity R (-, mx) can be exactly evaluated
using the data samples.

1.1.2 Challenges of modern data collections

As we have just seen in the previous section, any learning task formal-
ized using a risk function implicitly defines an optimization problem,
and can be addressed via empirical risk minimization (ERM). But even
assuming that the problem is “nice” from an optimization perspective

21

° A regularization term on the vector h
from Definition 1.4 is often added in prac-
tice in the optimization objective, but we
focus for now solely on the terms related
to the data.

Risk

Figure 1.2: Schematic representation of
the true and empirical risk functions.
One ideally wants to find h*, but can
only access R(-, mx). Empirical risk min-
imization produces the hypothesis h,
whose excess risk is AR (h,).

22

(e.g. convex), the viability of this approach is often limited in practice

by the nature of the data. We discuss here a few common characteristics

of the datasets collected nowadays.

1.

Most often, the number n of samples in the collection is very
large'®. This means that it takes time to go through the whole
collection, but also that the dataset is unlikely to fit in core memory.
When performing ERM, computing even a single gradient of the
risk function requires going through the whole collection, and be-
comes expensive. Although this can naturally be mitigated using
various techniques™, one should still expect to load multiple times
each sample in memory, and I/O operations can easily account for
a substantial part of the overall learning time. Even assuming that
sufficient memory is available, this makes any algorithm scaling
more than linearly with respect to n practically useless.

. Inmany applications, the dimension d of the data samples will also

be large. This calls, similarly to the previous point, for algorithms
with computational complexities that scale at most linearly with d.
But it also changes drastically the geometric properties of the data
and raises new questions; this is often referred to as the curse of
dimensionality*>.

The collection might not be stored in one place, but rather dis-
tributed across multiple devices or data holders. Centralization
might not be technically possible, or simply not desirable for vari-
ous reasons, and algorithms need to adapt to this setting. In the
extreme case, one can imagine applications where all the data
samples are produced by different users, and must be processed
locally.

Data might not be entirely known in advance, but take the form
of a data stream. It should then be possible to process incoming
data on the fly, and to update learned models gradually. Not any
algorithm can be modified for this purpose, and it is often easier
to come with new dedicated methods. This is often achieved via
intermediate representation such as linear sketches (cf. Chapter 3)
which are designed precisely to support sequential updates.

The data might be produced in a different location than where
it is used. As a consequence, the network traffic grows together
with the amount of collected data, which requires appropriate
infrastructures and increases energy consumption. Compression
algorithms can naturally be used to alleviate this problem, but
why not designing efficient sensing methods, i.e. methods able to
directly capture only the relevant parts or statistics of the data?

We mentioned the energy consumption induced by network in-
frastructures, but this is a larger problem which also applies to
storage and algorithms. Datacenters, servers and supercomputers
are known to require huge amounts of energy'3, and the global
worldwide consumption has only been growing with the advent of
cloud computing. Hence building large-scale efficient systems has
become a crucial challenge [18]. Reducing the amount of stored

*° For instance, Google translate uses a
training collection comprising more than
10'® samples [15]. In terms of volume,
many companies report processing more
than 100 petabytes of data per day, al-
though most of this information is never
stored. The large hadron collider (LHC)
collects (and stores permanently), after
filtering, in average one petabyte (105
bytes) of data per day [16].

" e.g. stochastic or block gradient meth-
ods.

*2In particular, volume grows exponen-
tially with the dimension, and the num-
ber of data points (sample complexity)
required for accurately learning standard
models also grows exponentially.

31t is not easy to give accurate estima-
tions here, especially given that the in-
creasing costs are balanced by significant
efficiency gains, but multiple sources
claim that data centers account for 1% of
electricity consumption worldwide. See
for instance [17] for up-to-date perspec-
tives.

data by directly compressing it at acquisition time, while keeping
its important characteristics for downstream learning applications,
can thus be considered as a way to minimize the problem. But
designing learning algorithms with this concern in mind is also
necessary; although energy consumption is most often directly cor-
related with the computational complexity, the connection might
at times be more tricky.

7. Sometimes, the data samples are considered to be of a sensitive
nature. This does not mean that learning is not possible or desir-
able, but suggests that alternative algorithms must be designed
with this concern in mind. A good example would be the medi-
cal domain, where combining data coming from many different
patients could be valuable to learn accurate global models which
could benefit to all; however, this should for obvious reasons be
done without revealing individual medical records, and simple
anonymization techniques are known to be insufficient for this
matter [19]. This also suggests, from a user perspective, that the
data might not be publicly available, but only accessible via a re-
stricted interface, or in a different form, e.g. as rough statistics that
do not reveal much about the individual samples.

8. Datasets might contain missing or corrupted data. We will not
focus on this problem in this thesis, but this is something to take
into account. This can be due to the failure of sensing devices, but
also applies to labels in the context of supervised learning: for
instance in computer vision, collecting large amounts of images
became straightforward with the proliferation of compact cam-
eras and smartphones, but labels are produced by human beings,
which is much more time-consuming™# and raises many technical
as well as ethical questions. Developing semi-supervised methods
(ie. using partially annotated collections) or unsupervised meth-
ods able to produce themselves pseudo-labels has also become a
crucial challenge.

9. Finally, data might not come in a numerical form as we assumed
it in Section 1.1.1, but rather be categorical or structured. This is
for instance the case of data measured across networks, where
the geometry defined by the network’s edges is often a valuable
information which can be used jointly with the samples to improve
learning performance. This calls for dedicated algorithms; this will
not be discussed in this thesis, and we assume when necessary that
structure can be leveraged into a preprocessing step to produce
numerical data. But extending the methods presented in this
thesis to integrate directly structural information would naturally
be interesting'>.

Trade-offs Inlight of these constraints, it becomes clear that standard
learning methods, such as for instance the generic ERM approach,
cannot simply be adapted to fulfill all these requirements. One must
come with tailored learning algorithms and frameworks, and integrate

23

41t thus comes at no surprise that mech-
anisms such as reCAPTCHA were intro-
duced: by asking the user to assign cate-
gories to images in order to detect bots,
this program also records the answers of
valid users, which can be used later as
categorization labels. This program was
displayed 100 million times per day at
the beginning of the last decade [20], be-
fore being replaced more recently by less
intrusive mechanisms.

In particular, one might benefit from
any extension of the kernel methods pre-
sented in Section 2.3 to other domains.

24

the considerations discussed above into the design process.

These methods should naturally be theoretically grounded. In
the case of statistical learning, it means that bounds on the excess
risk’® AR(h,) associated to the hypothesis h learned by the algo-
rithm should be provided. Note however that satisfying the above
concerns will most often come at the cost of reduced performance, i.e.
weaker and possibly probabilistic bounds.

This connects with the notion of probably approximately correct
(PAC) learning [21, Chapter 3]. An hypothesis class H is said to be
agnostic PAC learnable if there exists an algorithm which, for any
distribution 7 on X, any ¢ > 0,0 €]0,1[and any dataset X made of
at least n(e, §) samples drawn i.i.d. from 7, returns an hypothesis
whose excess risk satisfies AR(;L,) < ¢. We use here the notation
n(e,) to denote a function of ¢, §, which gives the smallest number of
samples required for e-approximate learning with probability 1 — §;
this is called the sample complexity. The results which appear later
are not explicitly casted into this PAC framework, but their nature is
sometimes very close: one always wants to control the excess risk with
high probability using the smallest number of samples as possible. In
our setting, the size of the intermediate compressed representation
will often play a role as well, and guarantees will depend on it.

In this thesis, we focus on a method called compressive learning,
which can cope at least with points 1-4 of the above list, and certainly
help with other considerations (depending on the practical setting).
The next section provides a rough overview of this method and why it
is interesting in this regard. We provide in Chapter 3 a comprehensive
overview of alternative approaches from the literature which can cope
as well with the problems stated earlier.

1.2 THE COMPRESSIVE LEARNING APPROACH

1 cf, (1.8).

large n T | 4 1 4
+—
) Convenient for distributed m p
7| Bl « E @ /;g data and data streams. 0
1 2 n| —» || I N NeJ > § >
P & | =Y Average 2. Learning
1. Sketching

Dataset X Sketch S Parameters 0
(size d x n) (size m = O(p) < nd) (size p)

In the compressive learning framework, which is depicted in Fig-
ure 1.3, the dataset is compressed into a single vector, called the sketch”
of the data. The sketch § of a dataset X = [x,, ..., X,,] is a vector, and is
simply defined as

5= % 3 o(x,), (1.10)
i=1

Figure 1.3: General Framework. The
dataset is sketched into a single vector of
generalized moments, from which the pa-
rameters of interests are then estimated.

7 The term “sketch” has multiple mean-
ings, which are further addressed in
Chapter 3.

where @ : X — Z is a wisely chosen feature map, which is typically
nonlinear. In the following, we will most often consider Z = R™ or C™
for some sketch size m.

The empirical sketch § is thus just the collection of the general-
ized'® empirical moments induced by ®. As will be explained later in
Chapter 2, we will consider in particular feature maps ® of the form
®(x) = p(Q7'x), where 2 € R is a randomly-drawn matrix and
p : R — R a nonlinear function applied pointwise. We will see that in
particular clustering and Gaussian modeling tasks can be performed
using p : z — exp(tx) (in the whole document, ¢ denotes the imaginary
number), and principal component analysis using the square function
p:x >zl

Advantages Although we postpone to Chapter 2 the details and intu-
ition behind this design of the sketching mechanism, one can already
see the computational benefits of working with such sketches.

Indeed, not only the feature map ® has a simple expression and can
be evaluated efficiently, but most importantly the average operation in
Equation (1.10) makes the computation embarrassingly parallelizable'?
as shown in Figure 1.4. When the data is split across multiple data
holders, each of them can sketch the local collection and only share the
resulting sketch — as well as the number of samples used to compute
it, so that correct weights can be computed in subsequent averaging
operations. When the dataset is located at one single location, the
sketching process can still be performed by batches on different cores
in order to speed up the process. Streams can easily be sketched “on
the fly” as well, simply by sketching the data samples one by one and
averaging the sketches progressively. In the following, we also refer to
this method as “online sketching”.

25

8 By opposition to the “standard” i-th
order moments.

¥ Samples can be sketched all indepen-
dently in parallel or by batches. In a
scenario where the data is already dis-
tributed (no data transfer cost), one
should expect the speedup to be linear
with the number of cores, hence beating
Amdahl’s law.

v v
batches
Sketch of
the local

dataset

Sketch of
the whole
dataset

Data stream Distributed dataset
[] Device 1 Device 2 Device 3 Device 4
., | Data sample
Ty
at time ¢
I Sketch on M Sketch M
the fly
G}
A
®
N
. 1|l . | Mean sketch
St-1r [S¢ .
o at time ¢
1 1

But computational efficiency should not be the only reason to con-
sider compressive approaches. Sketching drastically reduces the amount
of information and thus is a natural candidate for privacy-aware learn-
ing. We will show in Part IV that guarantees can indeed be obtained

Figure 1.4: Left: A streaming scenario,
where the data samples are sketched one
by one, and the mean sketch is contin-
uously updated. Right: A distributed
scenario, where each device computes
a local sketch, and a centralized entity
further averages these local sketches.

26

in this direction. Another interest of this compressive approach is its
generic nature. The choice of the function p depends on the nature of
the task to solve, but different learning tasks can still be tackled under
the same formalism, and the algorithms used to learn from the sketch
can be adapted for various problems.

Open Challenges Naturally, this approach has some limits. Beyond
the successful examples mentioned above, it remains a challenge to
find which tasks can or cannot be approximately solved with such a
compressive approach. Adapting the mechanism to supervised learn-
ing tasks is also not straightforward. More details will be provided in
Chapter 2, and some considerations for extension to broader families
of learning tasks are discussed in Chapter 10.

Related approaches Although moments have been used in statistics
for similar use cases, the compressive learning framework is rather
rooted in signal processing, and especially relies on compressive sens-
ing techniques and kernel methods (see Chapter 2). Many other ap-
proaches for learning with reduced resources exist. They often bear
similarities with compressive learning in the common tools they rely
on, such as the multiplication by random matrices, but these ideas can
be used in many different ways, and analyzed with different theoretical
tools. We discuss related ideas in Chapter 3, such as dimensionality
reduction techniques and coresets.

Seen as the succession of random linear operation and a pointwise
non-linearity, compressive learning can also be analyzed as the first
layer of a random neural network. The main difference lies in the aver-
aging operation; although such operations are sometimes performed
in neural networks*®, they never apply to all the features at once. Note
that shallow random networks are known to capture useful information
for classification [22], and some random convolutional networks have
more recently been observed to be invertible [23], so it should come
at no surprise that the sketch defined at (1.10) can capture enough
information to solve specific tasks when ® is wisely chosen.

1.3 CONTRIBUTIONS

We summarize our contributions, and propose below a list of the pub-
lications which are directly related to the thesis.

1.3.1 Layout and summary of contributions

The rest of the thesis is structured in four distinct parts. The fist part
mainly presents existing works, while the three other contain the contri-
butions of the thesis. These contributions extend the compressive learn-
ing framework in different directions. We propose here a summary of
these contributions, which follows the layout of the manuscript.

PartI reviews existing approaches for large-scale learning.

22 Usually referred to as “pooling” opera-
tions.

* Chapter 2 provides an introduction to compressive learning. It
explains how the whole framework is grounded in the field of com-
pressive sensing, and how the design of the sketching operator
is related to kernel methods. This chapter also details the differ-
ent learning tasks which have been addressed using compressive
learning.

* Chapter 3 discusses other randomized techniques for large-scale
learning, such as random dimensionality-reduction methods or
coresets. This chapter does not aim at being exhaustive, as it
encompasses a very large part of the literature, but rather tries
to present the most common ways to leverage random projection
and subsampling techniques.

Part IT suggests two directions for improving the distribution from
which the columns of the random matrix €2 are drawn. In the following,
it will be useful to decouple®! the radial and directional distributions
of these columns.

= Chapter 4 focuses on the particular setting of compressive cluster-
ing, where p = exp(¢-), and highlights the importance of choosing
well the scale of the columns of €2 — which can be interpreted as
frequency vectors in this setting. The contributions of this chapter
are empirical, and provide new insights on the connection between
the “optimal” scale®? of the frequencies and the separation (i.e.
the minimum distance) between the clusters to retrieve.

* Chapter 5 assumes on the opposite that an appropriate radial dis-
tribution is known, and focuses on the directional distribution. In
particular, it considers drawing the matrix €2 by stacking struc-
tured blocks with the aim of reducing the overall computational
complexity of the framework. We show empirically that the chosen
construction does not degrade the learning performance, while
indeed allowing significant time and memory savings. We also
discuss how existing learning guarantees can be adapted to this
new setting for compressive clustering.

Part III consists of a single chapter, and solely focuses on the k-means
clustering task, where one wants to recover k cluster centers. Solv-
ing the clustering problem with a compressive approach has already
been proposed in the literature, using a sketch of random Fourier fea-
tures and an algorithm inspired from generalized orthogonal matching
pursuit to recover the cluster centers from the sketch.

= Chapter 6 introduces a new algorithm to address this second task,
while still relying on a sketch of random Fourier features. The
method is based on the SHyGAMP algorithm, which itself belongs
to the family of approximate message passing methods. We pro-
vide a broad introduction to loopy belief propagation, and detail
how our compressive learning task can be casted into a standard
Bayesian formalism under the assumption of a Gaussian mixture
generation model. We detail how the dependence of the entries

27

* We will only consider distributions for
which this separability holds throughout
the manuscript.

*1i.e. the scale providing empirically the
lowest clustering error (assuming it is
unique).

28

of the sketch in the cluster centers allows us to use approximate
message passing techniques, and explain why further approxi-
mations are required. We discuss numerical issues arising when
implementing the method, and provide an experimental valida-
tion on both synthetic and real data. A method is also proposed
to tune the model hyperparameters. This chapter is the result of a
collaboration; my personal contribution mainly consisted in exper-
imental aspects of the work, and especially in exploring various
approximation strategies to estimate posterior quantities required
in the algorithm.

Part IV explores the potential of compressive learning for applications
where privacy preservation is required.

» Chapter 7 provides a broad introduction to privacy-preserving
machine learning, and in particular to the differential privacy
formalism, that we use to define and quantify the level of privacy
of an algorithm. It also reviews standard approaches for large-
scale privacy-aware learning.

= Chapter 8 shows how a slight perturbation of the sketching mech-
anism is sufficient to obtain formal differential privacy guarantees.
We provide results for the problems of clustering, Gaussian mod-
eling and PCA with sharp privacy bounds. A subsampling mech-
anism is also introduced to reduce the computational complexity
of the sketching operation.

= Chapter 9 suggests that the utility (for subsequent learning) is
closely related to a signal-to-noise ratio, and uses this criterion
to optimize miscellaneous parameters of the framework. Experi-
mental results are also provided for the different learning tasks
considered, and show that our method is competitive with state-
of-the-art approaches.

This part is also the fruit of a collaboration, and my personal contri-
bution consisted mainly in establishing the sharpness of the different
bounds, and running experiments for the clustering and PCA applica-
tions.

1.3.2 List of publications

Here is the list of the publications related to the thesis. Some of these
works are still under review.

= Efficient compressive learning (Part II)

— Antoine Chatalic, Rémi Gribonval, and Nicolas Keriven. “Large-
Scale High-Dimensional Clustering with Fast Sketching.” In:
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2018

— Antoine Chatalic and Rémi Gribonval. “Learning to Sketch for
Compressive Clustering.” In: International Traveling Work-
shop on Interactions between Low-Complexity Data Models
and Sensing Techniques (iTWIST). June 2020

* Message-passing (Part III)

- Evan Byrne, Antoine Chatalic, Rémi Gribonval, and Philip
Schniter. “Sketched Clustering via Hybrid Approximate Mes-
sage Passing.” In: IEEE Transactions on Signal Processing 67.17
(Sept. 2019)

= Privacy-preserving compressive learning (Part IV)

— Antoine Chatalic, Vincent Schellekens, Florimond Houssiau,
Yves-Alexandre de Montjoye, Laurent Jacques, and Rémi
Gribonval. “Compressive Learning with Privacy Guaran-

”

tees.” Submitted to Information and Inference (under re-
view), Mar. 3, 2020

— Vincent Schellekens, Antoine Chatalic, Florimond Houssiau,
Yves-Alexandre de Montjoye, Laurent Jacques, and Rémi Gri-
bonval. “Compressive K-Means with Differential Privacy.”
In: SPARS Workshop. July 1, 2019

— Vincent Schellekens, Antoine Chatalic, Florimond Houssiau,
Yves-Alexandre De Montjoye, Laurent Jacques, and Rémi Gri-
bonval. “Differentially Private Compressive K-Means.” In:
44th International Conference on Acoustics, Speech, and Signal
Processing (ICASSP). Brighton, United Kingdom, May 2019

= Other contributions

— Antoine Chatalic, Nicolas Keriven, and Rémi Gribonval. “Pro-
jections aléatoires pour I'apprentissage compressif.” In: Gretsi.
Aug. 26, 2019

— Rémi Gribonval, Antoine Chatalic, Nicolas Keriven, Vincent
Schellekens, Laurent Jacques, and Philip Schniter. “Sketching
Datasets for Large-Scale Learning (Long Version).” Aug. 4,
2020 (under review)

Part I

Ex1sTING TOOLS FOR LARGE-SCALE

LEARNING

This part reviews the different existing approaches for efficient
large-scale learning. The compressive learning framework is
presented in details in Chapter 2, and we provide in Chapter 3 an
overview of other common tools used in the domain.

Chapter 2
A Guided Tour of Compressive
Learning

HIS CHAPTER provides an overview of the ideas, algorithms and
tools used in compressive learning. It shows how the connec-
tions with the setting of compressive sensing, established in Sec-

tion 2.1, can be leveraged to get generic bounds on the learning error
(Section 2.2). This requires some assumptions on the sketching opera-
tor, which have been proved for several applications using tools from
kernel methods, as suggested in Section 2.3. Reconstruction algorithms
are discussed in Section 2.4, and a general summary of the different
tasks and guarantees is provided in Section 2.5.

2.1 A LEARNING FRAMEWORK ROOTED IN COMPRES-
SIVE SENSING

A fundamental result in signal processing is the Shannon' sampling
theorem [32], which states that a bandlimited signal having no fre-
quency higher than f,, hertz can be sampled regularly® without loss if
the sampling frequency f, satisfies f, > 2f,, i.e. is at least twice the
highest frequency contained in the signal. This theorem however only
provides a sufficient condition, and holds uniformly for all bandlimited
signals. Many lossless compression schemes however exist, allowing
to reduce further after acquisition the number of samples. Although
such schemes usually rely on nonlinear transformations, they make
clear that many signals are somehow much more “compressible” than
what could be expected from the Shannon theorem.

Compressive sensing3 is a field of signal processing which emerged
in the early 2000s around the idea that sparse signals, i.e. signals that
can be described in a domain using only a few nonzero coefficients,
can be sampled without loss using a much smaller number of measure-
ments that what the Shannon theorem would require. The sampling
scheme considered is not regular anymore, but still linear, and the
number of samples required is mainly related to the sparsity of the
signal.

We only provide in this part a brief introduction to the domain, and
refer the interested reader to the book A Mathematical Introduction to
Compressive Sensing [33] for a comprehensive summary, or to the paper

Contents

2.1 A learning framework rooted in
compressive sensing 33
2.1.1 Compressive sampling strategies
| 2.1.2 Algorithms for the inverse prob-
lem | 2.1.3 Measurement operators de-
sign | 2.1.4 Generalization to low-rank
matrix recovery | 2.1.5 Sketches as lin-
ear distribution embeddings

2.2 Recovery guarantees using ideal de-
coders 40
2.2.1 Instance-optimal decoders and
control of the excess risk | 2.2.2 Gener-
alization to semi-parametric models

2.3 Sketching operator design using
kernel methods 43
2.3.1 Measuring similarity with kernels
| 2.3.2 Finite-dimensional feature maps
for kernel approximation | 2.3.3 Exten-
sion to distributions and mean embed-
dings | 2.3.4 Tools for the lower re-
stricted isometry property

2.4 Algorithms to learn from the
sketch 50

2.5 Learning tasks with known com-
pressive approaches 52

*The theorem often takes the name
of Shannon for his comprehensive pa-
per [32] providing a concise proof, but
the result was according to his own
words “common knowledge in the com-
munication art” and similar formulations
had been earlier and independently pro-
posed by Nyquist, Whittaker and Kotel-
nikov.

*i.e. using equally-spaced samples

3 Also called compressed sensing, and
sometimes compressive sampling

34

“A Survey of Compressed Sensing” [34] for a more concise overview
of classical results.

2.1.1 Compressive sampling strategies

We introduce the notation | x|, to denote the number of nonzero entries
of a vector x. We define the support of a vector x € C? as

supp(x) = {i € [1,d] | z; # 0}, where [1,d] = {1, ...,d},

so that x|, = | supp(x)|. Note that although | - |, is often referred to
as the [,-norm, it is actually neither a norm#, nor a quasi-norm, nor a
semi-norm. We refer to it as a pseudo-norm, but without any specific
mathematical meaning behind this denomination. We say that a vector
x e C?is s-sparse when | x|, < s, i.e. when x has at most s nonzero
entries. We also say more qualitatively that x is sparse when |x||, « d,
and define X, as the set of of all s-sparse signals. For any p > 0 and x,
we use the notation

d 1/p
I, = (_Z w) , (2)

and recall that | - |, is a proper norm (called the [, norm) whenever
p=1

In the standard compressive sensing setting, one has access to linear
observations y € C™ of a signal of interest x € C?, obtained through a
linear measurement operator A and possibly corrupted by noise e:

y=Ax+e. (2.2)

One would like to recover the original signal x from its observations,
which is often referred to as an inverse problem. The number of ob-
servations is typically smaller than the ambient dimension, i.e. m < d,
so that even in the noiseless scenario (e = 0), the system (2.2) is
undetermined and has possibly an infinite number of solutions.

Compressive sensing revolves around the idea that, if x is known
to be sparse® as represented in Figure 2.1, then it is possible to de-
sign a measurement operator A such that x can be recovered from its
measurements and, more generally, such that uniform recovery of all
signals with a given sparsity level is possible.®

If a measurement operator A allows identifiability of all s-sparse
signals, in the sense that any x € X, is the only solution to the problem
Az = yover X, then one can theoretically recover in the noiseless case
(e =0) any x € 3, by solving

m‘icrt} |z, subject to Az =y. (2.3)
ze<

However, besides being a nonconvex optimization problem, Equa-
tion (2.3) is well-known to be NP-hard [33, p.55], and is therefore of
limited practical utility.

The key challenge of compressive sensing is thus to design not only
sensing matrices showing adequate properties while keeping the num-
ber m of observations as small as possible, but also practical recovery

4It does not satisfy the homogeneity
property.

y A x e

Figure 2.1: Measurement process: when
x is a sparse vector, y is close (up to
noise e) to a linear combination of a few
columns of A. For this example, the
non-zero entries of x and corresponding
columns of A are filled with dark blue.
>We consider here signals which are
sparse in he canonical basis for simplic-
ity, but sparsity in another basis could
naturally be used.

®Recovery of one fixed vector has been

studied and nonuniform guarantees ex-
ist, but we do not cover this setting here.

algorithms with provable guarantees when used with suitable mea-
surement matrices. The seminal papers in compressive sensing come
from Candes, Romberg and Tao [35], and Donoho [36], who combined
two main ideas to answer these questions. Firstly, it is possible to gen-
erate randomly measurement matrices that will be adequate with high
probability; then, [;-norm minimization can be used in place of (2.3),
yielding a convex optimization problem known as basis pursuit.

Note that, in practical applications, observations are usually cor-
rupted by noise (e > 01in (2.3)). Moreover, the signal of interest x
might not be exactly sparse, but only compressible, i.e. close to the set
of sparse signals. It is thus fundamental to derive guarantees that are
robust to noise, and stable with respect to compressible signals.

We first review the most common recovery algorithms, and then
detail in Section 2.1.3 under which conditions on the measurement
matrices recovery guarantees can be obtained for these algorithms.

2.1.2 Algorithms for the inverse problem

Note that when e = 0 and x is sparse, y is a linear combination of a
few columns of A. Recovering x from y thus amounts to choosing the
few columns of A which best express the signal x. As a consequence,
we will sometimes refer in the following to A as the dictionary, and to
its columns as the atoms of the dictionary.

We mentioned just earlier that using /,-norm minimization for re-
covery had been one of the key ideas in the early days of compressive
sensing. Many other algorithms have been since developed. They can
be mainly classified into three different groups : convex approaches,
which include /;-minimization, greedy approaches, and thresholding-
based techniques.

Convex relaxations Basis pursuit, which consists in replacing | - ||,
by the | - |; norm in (2.3), was one of the first approaches considered to
solve the inverse problem. Using the /; norm induces sparse solutions
similarly to the original problem, as suggested by Figure 2.2, but has
the huge advantage of inducing a convex optimization problem. In
applications where corruption by additive noise should be taken into
account, a straightforward generalization is basis pursuit denoising:

P
min LAz — y13 + Az, (2.4)

where A > 0 is a regularization parameter controlling the desired
tradeoff between sparsity and fidelity to the measurements. There
are other closely related formulations of the problem though, such as
quadratically-constrained /,-minimization, or the LASSO7 [37] in the
statistical community. Many different algorithms exist to solve these
problems; the interested reader can refer for instance to [33, ch.15] for
a first overview.

Greedy methods We regroup under this name the methods which
start from the sparsest possible vector z = 0 and iteratively increase

35

N (Y
i

[N

X
S
p
\ %
\

p=0
Figure 2.2: Standard /,, (pseudo-)norms
in dimension 2. Here S represents the
linear constraint induced by the observa-
tions. The blue curves show for each p >
0 the first isoline of the ,, (pseudo-)norm
which intersects with S, giving the solu-
tion x of smallest I, norm which satis-
fies the linear constraint. For p = 0, the
blue set is ;. All [, pseudo-norms for
p < 1 somehow induce sparsity, but only
1, yields a convex optimization problem.

7LASSO stands for “least absolute
shrinkage and selection operator”.

36

the support of z using greedy selection rules to better fit observations.
Algorithms such as matching pursuit [38] and its generalization or-
thogonal matching pursuit [39], which had initially been designed for
sparse approximation in various dictionaries, belong to this category
and can be used for reconstruction from random measurements [40].
In this case, the support of the solution is increased by one index at
each iteration. If z'*) denotes the current approximation at iteration k,
and assuming that A has normalized columns, the next index to be
added to the support is argmin, _,_, [A*(y — Az™)| (here A* denotes
the Hermitian transpose), i.e. the one corresponding to the column of
A which has the highest correlation with the residual y — Az,

The support can only grow with this algorithm, which can some-
times be a burden when an error is made during the first iterations.
One way to avoid such problems is to simply add extra steps in which
previously selected atoms can be replaced [41]. The CoSaMP algo-
rithm [42] is slightly different as it greedily selects multiple atoms at
each iteration, but also allows to replace previously selected atoms
using an extra thresholding step.

Thresholding-based techniques Iterative hard thresholding [43] is
the most common method in this category. Hard thresholding, is the
operation which consists in keeping only the largest entries of a vector.
If H_ denotes such an operator keeping the s largest entries, then the
algorithm is simply the succession of steps of the form

xFD = 7 (x* + A*(y — Ax¥))). (25)

Note that the quantity A*(y — Ax) can be interpreted as the gradient
of the cost function x %Hy — Ax|?, and thus the algorithm seen as a
succession of gradient descent and thresholding steps.

We now give an idea of standard properties used to provide theoreti-
cal guarantees for these different families of reconstruction algorithms.

2.1.3 Measurement operators design

Multiple complementary properties have been introduced in order
to characterize “good” sensing matrices. In practice, exact recovery
of s-sparse vectors via (2.3) is possible using m = 2s deterministic
measurements |33, Theorem 2.14]. However, [-minimization is not
practical as discussed above, and such guarantees are not robust to
noise at all.

Basis pursuit® can be shown to successfully recover all sparse vectors
if and only if the measurement operator satisfies a specific condition,
known as the null-space property; a variant can be derived for robust
reconstruction. Checking if a given matrix meets one of these properties
is however not straightforward, de facto limiting their usability.

If (a;);<;<4 denote the columns of A, and if we assume that A is
normalized such that |a,|, = 1 for each i € [1,d], then the coherence
of A, defined as pu(A) = max,;|(a;, a;)
sufficient recovery conditions for various algorithms, while being easily

, can also be used to state

%ie. recovery using the /;-norm mini-
mization.

computable. However such conditions can only be satisfied using a
number of measurements m scaling quadratically with the sparsity,
which is pessimistic as will be explained below.

The restricted isometry property (RIP) is a stronger? but more con-
venient tool to get around these issues. It has been introduced by
Candeés and Tao [44, 45].

Definition 2.1 (Restricted isometry property): A sensing ma-
trix A satisfies the restricted isometry property on a set S with
constant ¢ if

VxeS, (1-o)lxl; < JAx[; < 1+e)lxl5. (26)

In practice, it will be interesting to establish this property for sets of
the form § = X, — ¥, = X, as represented in Figure 2.3 — here and in
the following, we denote S; — S, = {z —y|z € S;,y € S,} for any two
sets 51, 5,. One can then think of an operator which satisfies the RIP
on ¥, — X, as an operator which preserves the geometry of X_.

When the set S indeed takes the form S = ¥, for some s, we de-
note ¢, the associated constant. We say qualitatively that A “satisfies
the restricted isometry property” when (2.6) holds on X, for a large
enough s with a small constant ¢,. The RIP is a sufficient condition for
successful uniform recovery of sparse vectors. Many guarantees have
been proposed in the literature, for the different algorithms discussed
in Section 2.1.2, based on conditions of the type ¢, < t, where k is a
small integer and ¢ some threshold lower than 1. Results for convex
approaches were for instance obtained first, both in the noiseless [45]
and robust settings [46]. Many papers successively improved these
bounds.

Role of randomness One of the reasons that contributed to the suc-
cess of the RIP is that some random families of matrices can be shown
to satisfy it with high probability, and using a number of measure-
ments m smaller than what would be necessary to enforce for instance
coherence-based conditions. Indeed, one can show that if A is a ran-
dom m x d matrix with independent mean-zero sub-Gaussian entries'®
with variance 1, then there is a constant C' such that for any € > 0, LmA
satisfies the RIP on X, with a constant smaller than ¢ with probabil-
ity 1 — 2exp(—e?*m/(2C)) provided that m > 2Cs 2slog(ed/s) [33,
Theorem 9.2]. Here e simply denotes the constant e = exp(1). This
result is close to the paper of Baraniuk et al. [47], which itself relies on
concentration inequalities which are similar to the ones used to prove
the Johnson-Lindenstrauss lemma. The latter will only be introduced
in the next chapter, but bears strong similarity with the restricted isom-
etry property. Common examples of matrices satisfying the above
condition are Gaussian matrices, which have i.i.d. N'(0, 1) entries, and
Bernoulli matrices which have i.i.d. Rademacher-distributed entries,
i.e. taking values +1 with probability % Constructing deterministic
matrices satisfying the RIP is actually a more challenging problem.
Note that the recovery guarantees obtained with the RIP when

37

oIt implies in particular the null-space
property.

{Ax|x e X }
= 5/ Ay
IR'VVI A'x

Figure 2.3: Restricted isometry prop-
erty on X, — 3 : the distances between
the points in 3 are approximately pre-
served by A.

'® A random variable X is called subgaus-
sian if there exists C', & > 0 such that for

any t > 0, P[|X| > t] < Ce ot

38

sensing using random matrices are obtained w.h.p. for a number of
measurements m = slog(d/s) (where = means “up to a controlled
multiplicative factor”), whereas coherence-based guarantees require
m = s°. When the RIP holds, then robust (to noise) and stable (to
approximately sparse signals) recovery guarantees exist for various
reconstruction algorithms as mentioned just above.

We now explain how the key ideas of compressive sensing can be
generalized to other models.

2.1.4 Generalization to low-rank matrix recovery

The tools presented above have been generalized to many other classes
of signals than sparse vectors. We will explain in Section 2.1.5 how
compressive learning can itself be interpreted as one of these extensions,
but we first present here the problem of low-rank matrix recovery. It
has many practical applications such as matrix completion (e.g. for
recommender systems) [48] or phase retrieval [49], but is also a key
building block for compressive PCA™, which motivates this overview.

The signal we consider is now a matrix X e C%*%, which is ob-
served via a linear operator M : C"1*%2 — C™, i.e. one has access only
to the measurements

y=M(X)eC™ (2.7)

The task consists here again in recovering X from its measurements.
However, the problem will most often only be interesting when we
consider a small value for m, i.e. when the problem is underdetermined.
Similarly to the case of vectors recovery, additional assumptions are
needed for unambiguous recovery. A natural (and meaningful in terms
of applications) model to consider is the one of low-rank matrices, i.e.
of matrices whose vector of singular values is sparse. We thus formulate
the problem as

mzinrank(Z) subject to A(Z) =y. (2.8)

This problem, known as affine rank minimization, is non-convex and
NP-hard**. However approximate solutions can be found by minimiz-
ing the nuclear norm of Z instead of its rank [50], which is a convex
optimization problem. Note that the nuclear norm of Z is simply the
I, norm of its vector of singular values, which explains the connec-
tion with the vectorial setting. Other classical approaches presented
in Section 2.1.2 for vector recovery also have natural extensions, such
as AAMIRA [51] for greedy methods (inspired from CoSaMP), and
singular value projection [52] or thresholding [53].

Because of the strong connection between the vector and matrix set-
tings, it comes as no surprise that for any rank » and m = rmax(d,, d5)
(up to a constant), one can design random operators M : C%1*%> — C™
which will satisfy a restricted isometry property'3 on the set of rank r
matrices with high probability. This bound on m is optimal.

Compressive sensing has been extended to many other models,
such as block-sparse [54] or cosparse [55] vectors, and signals living

" The connection will be made clear later
in Section 2.2.2.

> The problem (2.3) (for which a ref-
erence was provided regarding its NP-
hardness), can be reduced to the sub-
problem of affine rank minimization
where Z is assumed to be diagonal.

i.e. a property similar to (2.6), but for
matrices, e.g. with respect to Frobenius
and I, norms.

in union of subspaces [56] or low-dimensional manifolds [57]. More
recently, generative models have successfully been used in place of the
hand-crafted ones [58], opening the door for nonlinear measurement
operators that are themselves learned using deep networks [59]. We
of course cannot provide an extensive overview of all these develop-
ments here, but simply remark that these successive steps led to generic
results which can potentially hold for any abstract model of low di-
mensionality [60]; compressive learning is a straight continuation of
these works.

2.1.5 Sketches as linear distribution embeddings

We now make clear the connection between the sketching process
introduced in Section 1.2 and compressive sensing. Recall that we
defined in (1.10) the empirical sketch associated to a dataset X with
empirical distribution 7 as

5 %Z@(xi). (2.9)

Let P(X) denote the set of probability distributions over X and, for
a given feature map ®, let Dy, C P(X) denote the set of probability
distributions over X’ with respect to which @ is integrable. We define
the operator A : Dy — Z as

A(m) = B, P(x), (2.10)

~TT

which implicitly depends on the chosen feature map ®. The definition
extends naturally™ to finite signed measures. With this definition,
the empirical sketch of X can simply be written § = A(wx). If the
(X;)1<i<n are drawn i.i.d. according to 7, then when n is large the
quantity e = A(rx —) should be small*>. It is thus meaningful to
interpret it as noise, so that the sketch can be rewritten

§=A(m)+e, (2.11)

i.e. the empirical sketch is simply a noisy observation of the “signal”
of interest 7.

It is important to notice that, although the map ® used for sketching
is a nonlinear function, the operator A is linear with respect to proba-
bility distributions'®. Hence compressive learning can itself be seen
as a generalization of compressive sensing: the signal of interest is the
distribution 7, from which we measure a small number of noisy linear
observations. Moreover, and as will be made clear in the following
sections, the sketching operator will most often be randomized.

Learning from the sketch Compared to the compressive sensing set-
ting were the measurement operator typically reduces drastically the
dimension, we here map signals from the infinite-dimensional set of
probability distributions'” on X to a finite number of observations.
There is of course no hope to build A so that uniform recovery of all
distributions is possible, but one can still imagine being able to recover

39

“If p = py — p_ is the Jordan decompo-
sition (cf. Definition A.5) of j1, and p1, =
o, m,,pu_ = a_m_forsomea,,a >
0 and probability distributions 7, ,7_
(by normalizing), then A(u) = (u, ®) =
o, Al) —a_A(m_).

> It at least converges to 0 almost surely
as n — oo by the law of large numbers,
but most often with good concentration
properties.

®ie. Alam + (1 —a)my) = aA(my) +
(1—a)A(my) forany 7, my € P(X) and
a € [0, 1], and A is linear on the vector
space of finite signed measures.

7 Or, more generally, from the vector
space of signed measures of X, see Ap-
pendix A.1.

40

an approximation of r if it belongs to — or can be well approximated
by — some low-dimensional model. This can be interpreted as a form of
generalized sparsity: for instance in the case of Gaussian modeling, one
will approximate 7 with a Gaussian mixture, which can be explicitly
parametrized with a small number of parameters. Besides, depending
on the learning task to solve, one might not be interested in recovering
exactly 7, but rather only some related statistics (cf. Section 2.2.2).

Most often (see next section), learning from the sketch takes the
form of the optimization problem

min | A(r) =, (2.12)

where & denotes the chosen low-dimensional model of interest for the
task to solve. This could for example be the set of Gaussian mixtures
with a fixed number & of components for Gaussian modeling.

We recall that statistical learning problems are often modeled*®
via a risk function R(h,7) that one wants to minimize over h € H.
Intuitively, the function s - ||s — §|, plays the role of a proxy for this
risk function, and the model set & plays the role of the hypothesis
space. The approximation quality of this proxy will typically increase
with the sketch size™.

Note that this problem is quite similar to the well known generalized
method of moments (GeMM) in the statistical literature [1]. The latter
differs by the fact that the chosen statistics are rarely randomized — by
opposition to the constructions of ® discussed below —, and often
chosen so that (2.12) can be solved in closed form, whereas compressive
learning often leads to non-convex optimization problems for which
more complex algorithms are needed (see Section 2.4).

2.2 RECOVERY GUARANTEES USING IDEAL DECODERS

The parallel between the compressive sensing and compressive learn-
ing having been established in Section 2.1, we can now expose how
ideas from linear inverse problems have been leveraged in order to
formulate learning guarantees. We first present in Section 2.2.1 how
solving (2.12) can produce a solution (hypothesis) with controlled
excess risk, provided that the sketching operator satisfies a specific
kind of restricted isometry property. In Section 2.2.2, we discuss the
specific setting of semi-parametric models such as PCA, where one
does not need to reconstruct a distribution, but only a statistic in a
finite-dimensional intermediate space — e.g. the covariance matrix for
principal component analysis.

2.2.1 Instance-optimal decoders and control of the ex-
cess risk

We will use here the notations and concepts introduced in Section 1.1.1:
one has access to a dataset X (with empirical distribution 7x) made of
samples drawn i.i.d. according to some distribution 7, and one wishes

¥ See Section 1.1.1.

9 At least for some families of sketches.
See the connection with kernel methods
in Section 2.3.

to recover an hypothesis h € # for which the excess risk

AR(h,7) = R(h,7) — R(h*,) (2.13)

with respect to some optimal hypothesis h* € argmin, _, R(h,7) is
controlled.

Gribonval et al. suggested [5] a procedure to learn from the sketch
with statistical guarantees in two steps. Firstly, a probability distribu-
tion # = A(S) is recovered from the sketch using a function A whose
choice is discussed below, called the decoder. Then, the hypothesis is
recovered from 7 simply as

he argmin R (h, 7).
heH

(2.14)

In order to measure the proximity between probability distributions
with respect to the considered learning task, we introduce the notations
L(H) = {l(h,-)|h € H} and>°

I — 7T/Hz:m) = f::g |R(h,) —R(h,7")]. (215)
Although we skip some technical details here, ||, can be shown to
be a semi-norm on the space of finite signed measures for which I(h, -)
is integrable for any h (cf. Appendix A.2). Observe that if 7 = A(S)
is chosen so that its risk uniformly approximates the risk of 7 for all
hypotheses, i.e. if |7 — 74 < %17 for some constant 7, then the
excess risk (2.13) is bounded®! by 7. As a consequence, we now focus
on building a decoder A for which this bound 7 can be controlled.

Learning as an inverse problem As stated in Section 2.1.5, the sketch
can be written

§=A(r) +e, (2.16)

where e = A(mx —) can be interpreted as noise. Thus the role of
the abstract decoder A introduced earlier is to recover « from the
noisy linear measurements §, the reconstruction error being measured
according to || 2 3

As it has been observed in Section 2.1, recovering signals from un-
derdetermined linear systems requires some regularity assumption.
We introduce for this purpose a general model & of probability dis-
tributions of interest. Some concrete choices of G are summarized in
Section 2.5 for the different learning tasks considered, but this model
should qualitatively contain the probability distributions that can be
well approximated for the considered learning task, i.e. for which there
exists an hypothesis h € H for which the risk is low. This model plays
a similar role to the set 3, of sparse vectors in compressive sensing.
Note that we need the decoder A to be both robust to noise, and stable
with respect to probability distributions that are only close to &. This
can be written as

Ve P(X), Ve e Z, |r— A(A(T) +)|z < d(m, &) + [lef, (2.17)

for some distance d(-, &) to the model, and where < denotes inequality
up to a constant factor (see Figure 2.4).

41

2°We use this definition for readability,
as it is sufficient for this chapter. More
generally, for any class F of measurable
functions on X one can define the semi-
norm

Iul = = sup [(n, H)I,
feF

where (m, f) = E,_,f(x) for a distri-
bution 7, and can be extended to finite
signed measures via the Jordan decom-
position. We refer the reader to Ap-
pendix A.2 for more details.

*Indeed, we simply have in this case
R(h,) — R(h*,)
=R(h,) —R(h,#) + R(h, #) — R(h*,)

< R(h,) —R(h, #) + R(h*, %) — R(h*, 7)

<2sup |R(h,7) —R(h,n)]|,
heH

where R(h, mx) < R(h*, mx) holds by
definition of f.

Figure 2.4: Instance optimality property:
for any distribution 7 and noise e, the dis-
tance symbolized by the thick magenta
arrow can be controlled (in our setting,
for the || £ () semi-norm).

42

A decoder satisfying this property is called an instance optimal
decoder, and it has been shown [60, Theorem 3 with h € 3 —] that
the mere existence of an instance optimal decoder implies a lower?>
restricted isometry property: there exists a constant C' < oo such that

V7,7 €6, |1 =7l g5y < CIA(T) — A(T)o- (2.18)

But an interesting fact is that in the other direction, if (2.18) holds then
the decoder
A(s) = argmin | A(T) — s, (2.19)

TeG
is instance optimal [60, Theorems 7 and 4] for some d(-, &) whose
definition is omitted here. Proving (2.18) is thus the key idea to derive
theoretical guarantees, and Section 2.3 focuses on this point.

These results have also been extended to nonlinear operators [61].
Also, we naturally assumed X to be made of ii.d. samples drawn
according to 7, but the guarantees obtained with this strategy hold
even when this is not the case, although controlling |e|, might be more
difficult.

A note on the loss metric Although the lower RIP (LRIP) (2.18) with
respect to || -4, is sufficient to derive statistical learning guarantees,
it can be interesting as well to work with a variant of ||| ;5. namely

I = lscon 9P (R(hy,)= Rihy, 7)) — (R(hy, m) —~R(hy, 7).
o (2.20)

The function ||| 5 £ (3, can be extended to finite signed measures and
checked to be a semi-norm?3 as well, we refer again the reader to Ap-
pendix A.2 for more details. The reason behind this choice is that more
generic guarantees have been derived [5, Theorem 2.5] by establishing
a LRIP with respect to || 5 2 (s, rather than to ||-[-5, i.e. by proving

V7,7 €6, It =7 lappm < CIA(T) — ATl (2:21)

for some C' > 0. We stress that || 5 £ (3, < 2 || (3, hence if the LRIP
(2.18) holds (with respect to ||) with constant C’, then (2.21)
holds as well with C' = 2C".

2.2.2 Generalization to semi-parametric models

The approach described in the previous section makes sense as soon as
a meaningful parametric** model set G can be associated to the task to
solve. Provided that this model is “small” enough to allow the existence
of a sketching operator A satisfying a lower RIP (2.18), then one can
directly use its explicit parametrization to solve the inverse problem in
P(X). However some problems do not induce such parametric models.

The case of PCA A typical example is principal component analy-
sis*>, where the solution h* € arg min, Rpca (h, m) of the problem for a
given (centered) distribution 7 € P(X) and any fixed dimension is
well known to be entirely determined by the £ first eigenvectors of the

*2 By opposition to Equation (2.6) where
we have both lower and upper inequali-
ties.

»0On the subspace of measures with
respect to which every f € AL(H) =
{l(hlv')_l(h%')‘hl?h@EH} is
integrable.

*ie. 6 ={my|0c O} where ® C RP is
finite-dimensional.

BCE. (1.1).

covariance matrix Cov(w). As a consequence, two distributions 7, 7y
that have the same covariance matrix induce the same solution, and ac-
tually satisfy |7, — 7y, (3 = 0. Although itis technically possible to
use as a model the set of distributions supported on k-dimensional sub-
spaces, i.e. 6, = {m|rank(Cov(w)) < k} (which are distributions for
which the risk vanishes for some i € #), solving the inverse problem
over G would be inefficient because of the lack of a simple parametric
formulation, but also useless given that only the support of the recov-
ered distribution would be of practical interest. Such a model is said
to be semi-parametric, in the sense that the supports of the distribu-
tions in the model can be parametrized, but the whole model is still
infinite-dimensional.

Computing the covariance®® matrix can already be interpreted as a
compressive approach using the feature map ¢ : x xx7, assuming
the data is centered. However, in order to solve the PCA task one only
needs as stated above to recover the k first eigenvectors of this matrix, i.e.
its best rank-k approximation. As a consequence, further compression
is possible using using tools from low-rank matrix recovery presented
in Section 2.1.4. If M : R¥™¢ — R™ is an operator which satisfies
an LRIP on the set of rank-2k matrices®7, then one can show that the
operator A : w - M(Cov(r)) satisfies an LRIP?® akin to (2.18) on &,.
We refer in the following to this approach as compressive PCA [5].
Reconstruction is then performed by reconstructing a rank-k estimate of
the covariance matrix, but without estimating any probability density.

Other semi-parametric models This setting was later extended by
Sheehan et al. [62], who cast the task of independent component analy-
sis [63] into the same framework, but using as an intermediate statistic
the fourth-order cumulant tensor rather than the covariance matrix.
Learning unions of subspaces was also considered with a similar ap-
proach [62, Section 5.2], but for now still requires large sketch sizes.

2.3 SKETCHING OPERATOR DESIGN USING KERNEL
METHODS

We presented how compressive learning could be seen as a linear
inverse problem, and explained that recovery guarantees exist as soon
as a lower restricted isometry property (LRIP) (2.18) holds between the
metric |-[3, induced by the loss function, and the distance between
sketches | A(-)],. Apart from the semi-parametric settings where an
explicit reduction to a finite-dimensional space is induced by the loss
function, we however have not discussed so far how to prove this
property, nor have we explained how to choose the sketching operator
A in practice.

As detailed in Section 2.1.3, building linear operators between finite-
dimensional spaces satisfying a RIP is well known to be possible using
randomness. However, this becomes more tricky when working with
infinite-dimensional spaces, such as the space P(X) of interest for us.

43

*We actually compute the auto-
correlation matrix here rather than the
covariance, but the approach will mostly
be useful when considering centered
data, so we make this assumption in
the following and always refer to the
covariance matrix.

7 Typically a randomly designed opera-
tor, as discussed later in Section 2.5.

* See [5, Appendix E] for the precise con-
stants

44

Some works provided useful tools for generalization to generic Hilbert
spaces [64, 65], but without giving explicit or practical constructions
of the measurement operators.

In this section, we give an overview of how kernel methods can be
leveraged for this purpose. We will see that a kernel function (defined
just below) implicitly defines under some conditions a metric |-|,.
between probability distributions (Section 2.3.3), which most often
can be well approximated via an explicit finite-dimensional mapping
(Section 2.3.2). It will thus often be easier to choose a kernel « for
which the LRIP between |-, and |||, is satisfied (Section 2.3.4),
and then choose ® so that |A(-)[, ~ |-|,.. We start by introducing some
concepts relative to kernels in Section 2.3.1.

2.3.1 Measuring similarity with kernels

Most standard machine learning algorithms, such as support vector
machines® or principal component analysis, use the data samples
(X;)1<i<n by computing inner products of the form (x;,x;). Kernel
functions have originally been used in the learning community to ex-
tend such methods to non-linear settings. Let ¢ be a function (often
referred to as the feature map) taking values in a space endowed with
an inner product, that we also denote (-, -) for conciseness. One can
define k(x,y) = (¢(x), p(y)) and replace all the inner products per-
formed in an algorithm by this new similarity measure. This can be
very interesting, especially when ¢ is chosen to be non-linear, to capture
more subtle geometric properties of the dataset. In the other direction,
one can wonder if a given similarity function x : X x X — K (where
K = R or C), which typically could be known to have a meaningful
interpretation for the learning task to solve, can be expressed as a linear
inner-product via a feature map; a class of particular interest for this
purpose is the class of positive definite kernels.

X x X — K (where K = R or
C) is called a positive definite kernel if for any n € IN and any

Definition 2.2: A function « :

Xy, X, € &, the n x n matrix G with entries G, ; = x(x;,x;)
is symmetric (when K = R) or Hermitian (when K = C) and

positive definite.

According to the Moore-Aronszajn theorem [66], any positive defi-
nite kernel defines a unique reproducible kernel Hilbert space (RKHS),
i.e. a unique Hilbert space H of functions f : X — K endowed with a
dot product (-, -), containing the {x(x, -)},_, and satisfying [67, Defi-
nition 2.9]3°:

1. forany f e H,and x € X, f(x) = (f, k(x,"));
2. H =span{x(x,-)|x € X'}.

The first property, which is known as the reproducing property, implies
in particular that for any x,y € X, k(x,y) = (k(x,-), k(y, -)). We thus
have a way to represent any positive definite kernel by an inner product
via the map x — £(x, -). Although this property is interesting from a

* A support vector machine, or SVM, is
a model for supervised classification or
related tasks. In the standard binary (i.e.
two classes) setting, it mainly consists in
finding an hyperplane which separates
the two classes with the largest possible
margin, i.e. so that the samples of both
classes are as far as possible from this
hyperplane.

3°Here is another characterization: a
RKHS is a Hilbert space of functions
f + X — K for which the evaluation
functional x — f(x) is continuous for
any x € X. The existence of a unique
kernel satisfying the reproducing prop-
erty can then be derived from the Riesz
representation theorem.

theoretical perspective, working with the features x(x, -), which will
typically be high- or infinite-dimensional, will often not be of practical
interest.

Kernel trick The idea of replacing in a linear algorithm the inner-
product (x;,x;) by the quantity (x;,x;) for some kernel « (and for
each x;,x;) is known in the literature as the kernel trick, and allows to
efficiently generalize existing algorithms to new similarity measures.
Although evaluating r(x;, x;) is tantamount to computing an inner
product in a high-dimensional space, the associated features ¢(x;) are
most often never computed in practice — and ¢ is sometimes referred
to as an “implicit embedding”.

This concept was applied to many problems such as support vector
machines [68], principal component analysis [69, 70] or unsupervised
classification [71]. Numerous kernels have also been developed, to
account for different geometric properties of the collections but also to
deal with non-numerical or structured data.

However, most of the methods mentioned above still require for
a dataset x4, ..., x,, to build the n x n kernel matrix K with entries
K,; = k(x;,%;). Although directly evaluating the kernel x was initially
perceived as beneficial compared to working with the high- or infinite-
dimensional features x(x;, -), computing and storing the kernel matrix
can become prohibitive when working with large collections. As a con-
sequence, some authors considered instead using kernels that can be
computed or well approximated using finite low-dimensional feature
maps. If ¢ is such a map, then one can simply run any algorithm on
the features ¢(x,), ..., ¢(x,,) instead of the original data x4, ..., x,,.

It is also important to notice that, even though it is often meaningful
to start from a well-known kernel and to look for a finite-dimensional
approximation, as it will be done in the next section, any given finite-
dimensional feature map does in return define a positive definite kernel.
As a consequence, any choice of a sketching operator ¢ can be associ-
ated to a kernel function, and analyzed using the tools presented in
the following sections.

2.3.2 Finite-dimensional feature maps for kernel approx-
imation

In the following and unless otherwise specified, the term kernel will
always refer to a positive definite kernel. Finite dimensional feature
maps are of practical interest for compressive learning, as we will see
that the feature map @ used for sketching (whose dimension m should
ideally be as small as possible) is always derived from a kernel.
Some kernels have known finite-dimensional maps. For instance,
in dimension d = 2 the function k(x,y) = (x,y)? can be computed as
k(x,y) = (p(x), (y)) via the mapping ¢ : x = [x2,x2, V2x,%x,]". In
some contexts, it can also be interesting to first define a feature map
¢, and then to look at the induced kernel «(-,-) = (©(-), ¢(+)). As men-
tioned above, most kernels that are of practical utility, e.g. because they

45

46

have nice regularity properties, do not come with finite-dimensional
features. However, approximation using finite-dimensional features
is still possible, i.e. it is interesting for a given kernel & to find a map
p: X = R™ such that k(x,y) = (p(x), ¢(y)) for all x,y.

Mercer’s theorem [67, Theorem 2.10] provides a first step in this
direction. Although we do not state the whole theorem here, one of its
consequences is that a (positive definite) kernel x can be approximated
almost everywhere on & by an explicit finite-dimensional feature map,
i.e. forany ¢ > 0, one canbuild a featuremap ¢, : X — R™ withm € IN
such that |k(x,y) — (¢.(x), . (¥))| < € for almost every x,y € X.

An alternative approach was suggested by Rahimi and Recht [72]
for the class of translation-invariant kernels, i.e. for kernels that can
be written as x(x,y) = K(x —y) for some function K : X — R. The
space X is here assumed to be a vector space. The approximation is
based on the following result.

Theorem 2.3 (Bochner’s theorem [73])

A bounded complex-valued and translation-invariant kernel
#(x,y) = K(x —y) defined on IR? is positive definite if and only
if K is the Fourier transform of a non-negative Borel measure3' A
on R%.

Note in particular that, using the definition of the Fourier transform,
the measure A is a probability distribution when K (0) = 1; we always
make this assumption in the following. If x is moreover real-valued,
then we directly have for any x, y

k(xy)=Kx-—y)= 4(1 cos(wl(x —y))dA(w) (2.22)
= A (cos(w™x) cos(w’y) + sin(w’x) sin(w’y)) dA(w).

Rahimi and Recht hence proposed to approximate any translation-
invariant kernel x with associated distribution A using the feature map

¢+ x > [cos(w!x), sin(w]x), ..., cos(w? x), sin(w],x)]" € R*™,

(223)
where the w, ..., w,, are random vectors drawn i.i.d. according to A,
and which can be interpreted as frequency vectors in light of (2.22).
The features induced by ¢ are known in the literature as random Fourier
features. We have Ewh.'_’wmm_l(ga(x), o(y)) = k(x,y) via Bochner’s
theorem, and more precise concentration results depending on the
number of features m can naturally be derived. The original paper [72]
provides uniform approximation guarantees for compact subsets of
R¢, and these results have been later refined [74]. We will consider in
this thesis translation-invariant kernels, but approximation results also
exist in broader settings, see e.g. [75].

Extensions Another common variant of (2.23) is x + [cos(w’x +
i.d.d.

uy), ..., cos(wl x + u,)] where u, e U([0,2x[)™ and still w; "~ A,

31. ie. any measure defined on the
Borel o-algebra.

which also yields an unbiased estimator of the kernel, but often with
poorer guarantees in comparison3* [76].

Random Fourier features have been used to speed-up many different
learning tasks. Multiple works suggested using structured matrices [77,
78] or optical processing units [79] to speed-up computation33. Al-
ternative sampling schemes such as leverage scores [80] (for kernel
ridge regression) or quasi Monte-Carlo sampling [81] have been con-
sidered to improve the concentration quality, or even data-dependent
schemes [82]. Some works have considered the more generic task of
kernel learning [83, 84], where the features themselves can be learned,
or partially learned [85].

The case of the Gaussian Kernel It is worth noting that the class of
translation-invariant kernels includes already many common kernels,
and should not be seen as too much of a limitation. It includes for
instance the Gaussian kernel which will be of practical interest for us.
It is defined as

s s x -yl
Ko(X,y) = K (x—y) = exp <_T> (2.24)
for some o > 0. It turns out that this kernel induces a distribution of
frequencies A which is itself a Gaussian distribution. Indeed, more
generally for any positive definite matrix X, using A = N (0,X) we
have for any z:

E_exp(iw’z) = ,4 exp (16075) ————— exp(— LS w)dw
plus's) = || ep(s's) e [)
Xp(—%(w —%iz) TS (w — Biz) — %ZTEz>dw

. 1
a 4 V2rdet(Z) ¢

= exp(—%zTEz>. (2.25)

Using 3 = ﬁ[, we conclude that the kernel «, can be obtained via
the frequency distribution A = N/(0, %I), i.e. the variance of the
kernel &, in the spatial domain is the inverse of the variance of the
frequency distribution. The Gaussian kernel also belongs to the smaller
class of radial basis functions (RBFs) kernels, which contains kernels
that can be written as x(x,y) = ¢(||x — y|,) for some positive definite
function ¢.

2.3.3 Extension to distributions and mean embeddings

In this section, we explain how a given kernel implicitly defines a
metric between probability distributions, and how finite-dimensional
features introduced in Section 2.3.2 can be directly leveraged to de-
sign the sketching operator. We only give here a brief overview of
useful concepts, and refer the reader to the review article of Muandet
et al. [86] for more details on distributions embeddings.

Maximum mean discrepancy A common way to define a pseudo-
metric34 between distributions on X is to consider

47

32 At least for the Gaussian kernel (2.24),
the variance is uniformly higher com-
pared to (2.23). Uniform error bounds
are provided, but also with larger con-
stants.

3 More details on acceleration in Chap-
ter 5

34 We recall that a pseudo-metric on a
space E'is an applicationd : E x E — R
being positive, symmetric and subaddi-
tive. It differs from a metric in the fact
that d(p, ¢) = 0 can hold for p # q.

48

d(p.q) = lp—alz = S}CUJPC’!EXNP[J“(X)] —E,[f)]] (2:26)

for some class F of real-valued measurable functions on X". Different
pseudo-metric can be described in that way, such as the total variation
or Wasserstein distances. The semi-norm || 4, induced by the loss3>
also follows this definition, and we refer the reader to Appendix A.2 for
more details. An interesting choice in our context is to take F to be the
unit ball in some RKHS H according to | - |, (naturally induced by the
inner-product), as it has been suggested by Gretton et al. [87]. If is
the reproducing kernel of a RKHS, we denote this pseudo-metric |-||, ;
it is known as the maximum mean discrepancy (MMD). Kernels for
which |-, is a true metric are called characteristic kernels and can
be characterized precisely [88]. In particular, a translation-invariant
kernel is characteristic if and only if its associated Fourier transform A
(i.e. as defined in Theorem 2.3) satisfies supp(A) = R?.

Mean kernel and mean embedding We provide some other char-
acterizations that are of interest here. Any kernel s can naturally be
extended to distributions as

H’(Trl’ 772) = Ex~7r1Ey~7r2’%(X7 Y)v (2'27)

which is known as the mean kernel but denoted « as well for simplicity.
The definition naturally extends to finite signed measures via the Jor-
dan decomposition3®. The maximum mean discrepancy then simply
derives from the mean kernel, i.e. for any finite signed measure ; we

lpelle = A/ (m, 1) (2.28)

Another close concept is the notion of mean embedding, which

have

extends the feature map k(x,-) by associating to every probability
distribution a mean element in the reproducing kernel Hilbert space.

Definition 2.4 (Kernel mean embedding [89]): The kernel
mean embedding of P(X) into a reproducing kernel Hilbert
space H with reproducing kernel « is the mapping

KME: 7 /Xn(x, Sdm(x). (2.29)

A sufficient condition for KME(7) to exist (as defined in (2.29)) and
to belong to # is E, _.[x(x,x)] < co. For any f € H and 7 € P(&X),
the reproducing property implies that E,__f(x) = (f, KME(7)). This
implies in particular that the mean kernel between two probability
distributions 7y, 7, can be written (my,my) = (KME(m;), KME(7,)).
Mean embeddings and the MMD have been used for many applications,
including (not exhaustively) density estimation [9o], clustering [91],
or posterior design for Bayesian estimation [92].

Connection with random features The connection with the random
features introduced in the previous section now becomes clear. Let

35 Cf. Section 2.2.1.

3 of. Definition A.5 and remarks of Sec-
tion 2.1.5.

be a kernel which can be written3” x(x,y) = E_, (¢, (X), ¢, (y)) for
some feature function ¢, : X — C and distribution A. Let ® be the
feature map defined as

O(x) = [04,(%), s 0, ()] (2.30)
where m € N and the (w;),,,, are drawn i.i.d. with respect to A.
We recall that we defined earlier the sketching operator in (2.10) as
A(m) = Exop
sketches of any two distributions 7, 7, is, in expectation over the draw
of ¢:

®(x). Hence the normalized inner product between the

E% (A(mry), A(mry)) —E w B <Ex~7r1‘1)(x)7 Ey~w2¢(Y)>

mo Wiy, Why,

= Ex~7r1 Ey~7r2 Ew~A <(pw (X) » P (y) >

K“(ﬂ-laﬂ-Q)»

i.e. the mean kernel between the distributions. The number m of
features used in ¢ controls the concentration and, of course, needs
to be chosen wisely. An important consequence is that the pseudo-
metric |A(m; —m,)|, can be interpreted as an empirical estimate of
the maximum mean discrepancy |7, — 7, |,., which gives a whole new
meaning to the geometry of the feature space Z to which the computed
sketches belong.

We recall that our original motivation was to establish a restricted
isometry property of the form (2.18) with respect to |.A(-)|,. Due to
the regularity properties of |||, it might be easier to find or design a
kernel for which the LRIP (2.18) is satisfied with respect to |||, with
high probability. When this is possible, one can in a second time look
at the concentration properties, and choose m so that the LRIP will be
satisfied with respect to |.A(-)|, with high probability.

Different kinds of concentration results can be considered. We refer
the reader to [5, 6] for results that can be applied for the settings
of clustering and Gaussian modeling using random Fourier features.
The proof techniques usually rely on a pointwise concentration result,
i.e. controlling for ¢ > 0 and every 7,7 in the model the probability
P(||A(—7")|/ | — 7’|, — 1] > ¢). Such a result can then be extended
to a uniform result over the whole model by taking into account its size,
measured in terms of its covering number, i.e. the minimum number
of elementary balls it takes to cover it entirely with respect to a well
chosen norm.

2.3.4 Tools for the lower restricted isometry property

We recall that the strategy sketched in Section 2.2.1 to derive recovery
guarantees relies on a lower RIP of the form (2.18), i.e. between the
pseudo-metrics ||-{ ;) and [A(-) . It was shown in the previous sec-
tions that kernel functions naturally induce (pseudo-)norms, which in
many cases can be well approximated with explicit and randomized
finite-dimensional feature maps. Assuming that the concentration
of such features can be well controlled independently of the kernel

49

3% For translation-invariant kernels,
this construction can be derived from
Bochner’s theorem Theorem 2.3.

50

(which implicitly assumes that the considered model of distributions
is somehow “small” enough), it still remains to choose a kernel for
which the lower RIP between ||-[4, and |-[,, (i.e. the MMD) holds.

We do not provide more details on this matter, but refer again the
interested reader to [6] for a general methodology which applies to
models of mixtures of some base parametric distribution family (e.g.
normal distributions, Diracs). These results use some common tools
from compressive sensing, such as a generalized notion of coherence
between atomic elements of the model.

2.4 ALGORITHMS TO LEARN FROM THE SKETCH

The strategy exposed above to learn with theoretical guarantees was
based on the ideal decoder (2.19). In practice however, the optimiza-
tion problem (2.12) is not-convex and difficult to solve. We present
here the main heuristics that have been proposed in the literature. Al-
though presented here in a generic manner and probably usable in
other contexts, these heuristics have mainly been used when sketching
with random Fourier features (2.23).

Thresholding Bourrier et al. first proposed an algorithm presented
as a generalization of iterative hard thresholding [3, 93], with applica-
tion to density fitting using Gaussian mixtures. Considering a family of
distributions (p,) parametrized3® by 6 € R?, the algorithm consists in
initializing and updating a support {6, ..., 8, } and associated weights
(a;)1<<), Tepresenting a “sparse” mixture p = Y % | ay.pg, - The sup-
port is updated by iteratively choosing some new atoms {51, e 51}
having a high correlation with the residual A(p) — §, which are added
to it, and then reducing (thresholding) the support again down to the
k atoms that best fit the empirical sketch §; this last step is performed
via the non-negative least square problem

arglg;l I8 —[A(pg,); -» APy,) A), -+, Alpg ar]®
and keeping the atoms associated to the highest weights. Note that
although the support is extended and reduced at each step, the mixture
is still somehow always sparse by nature, limiting the connexion with
thresholding algorithms used in compressive sensing. This method
also bears similitudes with CoSaMP [42] by the way it selects multiple
atoms at each iteration, although initialization differs.

Greedy approaches A generalization of orthogonal matching pursuit
was proposed by Keriven et al., with applications to both Gaussian
modeling [94, 4] and k-means clustering CKM [2].

We give a generic formulation of this algorithm in Algorithm 2.1
below; using the same notations as above, it starts from an empty
support and iteratively adds a new atom to the support at line 3. This
operation being a nonconvex optimization problem, a local optimum
is chosen. At line 4, the weights are computed via a non-negative

3 p, could for instance be the multivari-
ate normal distribution with mean 6 and
identity covariance

least square problem — they will be used to update the residual. Then,
a final optimization step is performed at line 5. This optimization
is performed by starting from the current support and weights; it
thus allows to correct slightly the previously chosen atoms, and has
been shown to be useful in practice due to the lack of incoherence of
the dictionary, but this step should not drastically change the current
solution.

This process is repeated k times, yielding a mixture of k atoms. A
variant with replacement steps has also been proposed [94], following
the idea orthogonal matching pursuit with replacement [41].

Input: Sketch §, sketching operator A, size of mixture k.
1T 5, O Q]
2 fori < 1tokdo

3 @e@u{arg;nax 9{<”ji—§;’§|j>}

// Init

// Pick new atom

1o
4 o« argmin ||S— > a;A(py,) ‘ // Find weights
a>0 j=1 :
el
5 O, a¢<—argmin S—ZO[jA(pgj> // Adjust atoms
©,a>0 7=1

N]
6 | T80 a;Ap,)

// Update residual

7 return the support ©, the weights a.

In the following, we refer to this approach as compressive learning
orthogonal matching pursuit (CL-OMP). The variant with replacement
is denoted CL-OMPR. Note that the algorithm is quite versatile in
the sense that it can easily be adapted to new parametric families py,
as soon as one can compute A(py) and the gradients needed for the
optimization steps. Some reconstruction guarantees can be obtained
for some specific families of kernels [95, 96] when assuming that line 3
can be solved.

Note that this algorithm can be adapted to the PCA setting3?, where
one does not reconstruct a distribution but directly a low-rank estimate
of the covariance matrix. ADMiRA [51] is another greedy algorithm
for low-rank reconstruction, but differs in the fact that it adds multiple
new atoms at each iteration, similarly to CoSaMP (see Section 2.1.2).

Beurling LASSO Although greedy methods have the advantage of
being generic, we should not occult the fact that application-specific
algorithms exist as well. The problem of compressive clustering, where
one aims at retrieving a mixture of Diracs (sometimes also referred
to as “spikes”), is indeed very close to the Beurling LASSO problem,
which could in our setting be written as

min [A(u) —8[3 + Alul (X),

2.31
in (2.31)

where M(X) is the set of finite signed measures on X, \ is a regular-

ization parameter and |u|(X) = SUP partitions (E,) ;. oo of X Yooy l(Ey)|
denotes the total variation of . The latter can be interpreted as a con-
tinuous generalization of the [, norm, and favors sparse measures, i.e.

51

Algorithm 2.1: CL-OMP. Here R de-
notes the function extracting the real part
of a complex number.

39 One would then build a d x k matrix,
where k is the desired rank, by starting
from one vector and iteratively adding
new columns.

52

mixtures of Diracs. Methods such as the Frank-Wolfe algorithm and
variants can be leveraged [97, 98, 99, 100] to address this problem, and
bear connections with CL-OMP.

2.5 LEARNING TASKS WITH KNOWN COMPRESSIVE
APPROACHES

Previous sections introduced the key ideas behind compressive learn-
ing. We now enumerate the different learning tasks for which com-
pressive learning techniques have been successfully applied in the
literature. The three tasks introduced in the introduction (density
fitting with Gaussian mixture models, k-means clustering and PCA)
are first discussed, and we then mention a few other applications for
which empirical successes have been obtained. Tables summarizing
these different compressive learning approaches are provided at the
end of the section.

Density fitting Using Gaussian mixture models to fit the empirical
density4° was one of the first applications of compressive learning. In
this context, the sketch is computed using random Fourier features
(2.23) with Gaussian i.i.d. vectors wy, ..., w,,,.

It is interesting to note that when using such features, the maxi-
mum mean discrepancy between any two distribution 7, 7, defined
at (2.28), and which can be approximated by the distance between the

finite-dimensional sketches, can be rewritten according to [88, Corol-
lary 4.(iii) |

Iy = ol =l xmy — K% 772”L?(1Rd) ~ [A7) — A(mo) | (2.32)

where *x denotes the convolution operator, and x the Gaussian kernel
associated to the chosen distribution of frequencies; hence sketching
can be interpreted as smoothing the input distribution. From a statisti-
cal perspective, the sketch can also be seen as a collection of random
samples — at frequencies wy, ..., w,, — of the empirical characteristic
function.

Reconstruction is performed by solving (2.12), using as a model
the set of mixtures of k Gaussian distributions. Empirical success
were first obtained by Bourrier et al. [3, 101] using the thresholding
algorithm described in Section 2.4. CL-OMPR was then proposed as
an alternative algorithm [4].

Statistical learning guarantees have later been obtained [5, 6] for the
optimal solution of the inverse problem#" using the strategy described
in Sections 2.2.1 and 2.3, for some refined distribution of the frequencies
and with additional separation assumptions between the centers of the
Gaussians, provided m = k*d (up to logarithmic terms; note that the
bound also depends on the scale of the kernel defining the sketching
operator).

Density fitting using a-stable distributions has also been considered
empirically for blind source separation [102]; such distributions enjoy

4 Cf. Definition 1.3.

4 We mean here that these guarantees
hold for the distribution recovered by the
optimal decoder (2.19), but we still lack
guarantees on the heuristics such as CL-
OMPR used in practice.

desirable modeling properties, but the associated likelihood has no
closed form, and rewriting the task as a moment-fitting problem solves
this problem.

Clustering There are very different ways to cluster a dataset**, how-
ever the k-means formulation given in Definition 1.2 can be solved
using again Fourier features. Reconstruction with the CL-OMPR al-
gorithm has been proposed [2], and is performed via solving (2.12),
but this time on the set of mixtures of k Diracs. Guarantees have been
obtained with the same formalism [6], albeit the distribution of the
frequencies differs slightly compared to Gaussian modeling. These
guarantees hold provided that the clusters are sufficiently separated?3,
and as soon as the sketch size satisfies (up to log factors) m = k*d,
which might still be pessimistic as only p = kd parameters are learned.
Note that the k-medians problem (where the hypothesis is still a set of
k points h = {cy, ..., ¢, }, but the error is measured with the euclidean
distance, i.e. the loss becomes [(h,x) = min,_, ;. [|x — c;| without a
square) can also be addressed with the same formalism.

The usage of random Fourier features follows early works in com-
pressive sensing [35], where it is known that recovery of sparse signals
from few random samples in the Fourier domain is possible. In a contin-
uous setting, recovering a mixture of Diracs from samples of its Fourier
transform is known as super-resolution or “off the grid” compressive
sensing [103], and bears strong similarities compressive clustering.
Samples are however in that case most often deterministically chosen,
which brings slightly different theoretical guarantees.

Schellekens et al. suggested a quantized variant of the sketching
mechanism [104], which uses Fourier features with quantized real and
imaginary parts, i.e. in {—1,1} +¢{—1,1}. Although quantization is
“lost” in the average operation, this still reduces the sketching com-
putational cost, and storage in the case where the individual sketches
should be sent over a network. This quantization requires adding a
random “dithering” u € [0, 27[™ before applying the non-linearity.

As we will make extensive use of random Fourier features through-
out the thesis, and because guarantees for quantized features will also
be provided in Part IV, we give now a unique definition and notation
for these features, which generalizes (2.23).

Definition 2.5 (Random Fourier features): For any matrix of

e R¥*™ and dithering vector u e

frequencies = [wy, ..., w,,]

[0,27[™, the random Fourier feature map is defined by
P (x) = p(2Tx +u) +Lp<QTX+u— g) eC™, (2.33)

where p is applied pointwise and with the particular cases
* u = 0and p = cos for unquantized features*+;

= u e [0,27[™ and p = 27'/2sign o cos for quantized features.

In the rest of the manuscript, and unless specified otherwise, the

53

42 For k-means, we try to recover optimal
centroids centers, but we could also op-
timize the boundaries between clusters,
or produce hierarchical clusterings, etc.

We will see in Chapter 10 that such a
separation is actually necessary to estab-
lish a LRIP.

44. Then ®*F(x) £ exp(1Q7x).

54

frequency vectors wy, ..., w,,, will be drawn i.i.d. according to a mul-
tivariate normal Gaussian distribution, so that the inner product be-
tween the induced features approximates a Gaussian kernel as shown
in Section 2.3.2. We however dissociate on purpose the frequency
distribution from the feature map, as we will consider in Chapter 5
other frequency distributions which may still approximate the same
Gaussian kernel.

Semi-parametric models We discussed in Section 2.2.2 the case of
PCA%5, and how it fits in the compressive learning formalism using
tools from low-rank matrix recovery. Combining the reduction from a
distribution to its covariance and the subsequent compression using a
random linear measurement operator on the set of matrices, we obtain
the following features#°.

Definition 2.6 (Random quadratic features): For any matrix

Q= [wy,...,w,,] € R”™, the associated random quadratic fea-

ture map is defined for any x € X as

O (x) = [(wix)?, .., (Wi x)?]7,

i.e. corresponds to using the nonlinearity f(-) = (+)*.

Unless otherwise specified, we consider that the (w;),;,, areii.d.
Gaussian. We will see that the structured operators from Chapter 5
can also be used for such features.

The model considered when fitting a k-dimensional subspace is
the set of distributions with a rank-k covariance matrix, and multiple
algorithms exist in the literature for reconstruction. Reconstruction is
possible as soon as m is of the order of k(n — k), which is the dimension
of the Grassmanian Gr(k, R?), i.e. of the manifold of k-dimensional
linear subspaces in R?.

Independent component analysis (ICA) has been performed in a
similar manner [63]. Approaches using the fourth-order cumulant
tensor were known in the literature, yielding a finite-dimensional rep-
resentation with ©(d*) parameters, which can be further reduced via
a randomized operator down to ©(d?) components.

Learning unions of subspaces (UoS) has also been considered under
this formalism [105]. This approach relies on generalized PCA [106],
and aims at recovering a low-rank approximation of the autocorrelation
matrix of the so-called “Veronese” embeddings*7.

Supervised learning Knowing whether and how the sketching mech-
anism can be modified to take into account labels in order to solve
supervised learning tasks is still an open question. However, for tasks
such as classification or class membership verification (i.e. verify if a
given sample belongs to a given class), it is at least possible when the
number of classes is small to compute a sketch for each class. Then
any new sample can be sketched and compared to the sketches of the
different classes. This approach was initially proposed for the task

45 Cf. Definition 1.1.

#In practice, we have A(m) =

M(Cov(m)), where we only need M
to satisfy a LRIP for low-rank matrices.
There are multiple ways to do that,
and the suggested construction, which
can be interpreted as a collection of
rank-1 measurements, i.e. M : C
[(wlwf7 C)proos (wpwk, C) J, is only
one possibility.

These are made of all the monomials of
degree N of the data, where N denotes
the number of subspaces to recover

of speaker verification*® [107, Section 5.4.6], i.e. checking if an au-
dio sample comes from one specific user, and a similar idea was used
for classification [108]. This approach actually emulates Parzen win-
dows [109], but using random Features in order to approximate the
chosen kernel.

High-dimensional regression has also been considered using the
GLLiM model [110], which allows to recast regression as a Gaus-
sian modeling problem with additional structure constraints on the
covariance matrices of the different components. Sketching is per-
formed jointly on both components, i.e. regression from R% to R%
is done by learning a GMM in dimension d; + d,, and each sample
(x} e R%,x? e R%) is sketched as one single vector [(x])7, (x7)7]".
Some elements have been written down*9, but never published as the
method was numerically quite unstable.

We summarize in Table 2.1 the distinctive features of the three tasks
for which theoretical guarantees have been derived, and in Table 2.2 the
other tasks which have been addressed experimentally with various
compressive approaches.

55

48 To be exact, this work considered using
both a sketch per class and an additional
“global” sketch.

4 See [111, Section 4.2] for an intern-
ship report, following discussions
with N.Keriven, A.Deleforge and
R. Gribonval.

Task Hypothesis Loss I(h,x) Features Algorithm

Guarantees

ming ;o [x — Ci”i

For m 2 k®d x log factors [6],

k-means/ Set of points p = 2 for k-means RFF CL-OMPR [2], assuming Vi|c;[, < R,
medians h={cy,...,c;} p = 1for k-medians (Def. 2.5) CL-AMP (Chap. 6) min|c, — chj = o2 log(ek),
(Def. 1.2) weighted features.
GMM with means (c;); <<z, _ log(p, (%)) REF For m = k?d x log factors [6]
GMM fitting fixed covariances (X;);;<x ® fg Ph) (Def. 2.5) CL-OMPR [3, 107] assuming max |c;[s; < R
- .1, . 2.
s.t. ViX,; = X, weights 13 o5 min |c; — CJHQE z 2+ ‘73:) log(ek)
—10,x]3 RQF
PCA Subspace h € Gr(k, R%) I= wxl2 Q Discussed in Sec. 9.3 For m = kd [5], via a matrix RIP.
(Def. 1.1) (Def. 2.6)

Table 2.1: Summary of the learning tasks which have been addressed using compressive methods and for which theoretical guarantees
have been derived. For GMMs, we use the notation |x||y; = x=1x, and p,, denotes the density of the mixture. For PCA, IT, denotes

the orthogonal projector onto h.

Task Features Approach

Sketching of the data 4-th order moment.

ICA Rand tic feat
andom quartic features 4-th order tensor [63].

Recovery of a diagonalizable (via an orthogonal matrix)

Inverse problem solved via iterative projected gradient [63].

Quadratic random measurements Recovery of a low-rank approximation of the

UoS
° of a polynomial embedding autocorrelation matrix of the polynomial embeddings [105].
Fitti .) 1 on the ioi ion a2l
Regression REF (Def. .5) itting a Gagss1a1.r1 mixture model on the joint data [111, Section 4.2]
Reconstruction via CL-OMPR.
Classification REF (Def. 2.5) Density fitting for each class independently

(one sketch by class) [108].

Class membership RFF (Def. 2.5)

Density fitting for each class (one sketch by class)
+ 1 “universal” sketch [107, Section 5.4.6].

Table 2.2: Summary of other tasks which have been empirically addressed using compressive methods. ICA stands for “independent
component analysis” and UoS for “union of subspaces” learning. For ICA, the sketch is made of random linear observations of the 4-th

order cumulant tensor of the data (hence quartic w.r.t. the original data).

Chapter 3
Large-Scale Learning: Related Work

E PRESENTED in Chapter 2 the compressive learning frame- ~ Contents

work, and stressed that it was very well suited for large 3.1 Approximate query processing
over data streams 58

scale learning and could by design be used in distributed and , o
3.1.1 Approximate estimation | 3.1.2

streaming scenarios. There exist however many other ways to solve Linear sketches for frequency moments
learning tasks on large data collections. Going into the detail of each 3.2 Dimensionality reduction tech-
of these techniques is out of the scope of this chapter, but we propose niques 6o

3.2.1 Data-agnostic approaches | 3.2.2
to briefly present the different families of methods coexisting in the Adaptive approaches
literature. 3.3 Reduction of the number of sam-

These methods can broadly be classified into three categories as ples 63 _

3.3.1 Coresets | 3.3.2 Subsampling
depicted in Figure 3.1: computation of global statistics from the whole 3.4 Randomized linear algebra 68
collection — including but not limited to the sketches of Chapter 2 —, re- 341 Randomized low-rank factoriza-

. ti 4.2 The case of positive semi-
duction of the dimensionality, and reduction of the number of samples. fon | 3.4.2 The case of positive semi
definite matrices

All of these methods are sometimes called sketching techniques in the 3.5 Conclusion 73

literature, as they all rely on a sketch, i.e. a much smaller representation

of the dataset. Note however that the nature of the sketch will vary a
lot between the different approaches.

Yi|¥2|Ys3| - |¥Yn

> Dimensionality Reduction

Data-dependent or independent.

Cf. Section 3.2.

[> Coresets
| ——— Xq —lx, Subsampling, geometric decom-
positions.

Cf. Section 3.3.

A\ large n

d| [X1|X2|X:

w
»

> Sketching
s Cf. Chapter 2 for sketches of mo-
ments, and Section 3.1 for other
“linear” sketches.

Figure 3.1: Different approaches to learn

o .) . efficiently from large data collections.
We will introduce in Section 3.1 some simple sketches from the

database literature to answer basic queries about data streams, and
cover in Sections 3.2 and 3.3 different methods to reduce the dimen-
sionality and the number of samples in a collection, focusing mainly on
randomized methods. We also briefly explain in Section 3.4 how these
tools can be generalized or combined to perform some linear algebra

58

tasks in a randomized manner.

This chapter is not exhaustive as many different techniques have
been introduced for large-scale learning. For instance, although some
of the presented methods do extend naturally to the distributed setting,
we reason in the centralized setting — where one data curator has access
to the data matrix (or stream) X, and we do not cover techniques such
as federated learning [112], where data remains decentralized while
learning. We do also not detail online and stochastic optimization
techniques, and refer the reader for instance to the work of Slavakis et
al. [113] on that matter.

Most of the approaches presented below are somehow generic and
can be applied to various learning tasks. Application-specific surveys
exist in the literature, see for instance [114] for the clustering setting.

3.1 APPROXIMATE QUERY PROCESSING OVER DATA
STREAMS

We already stressed that algorithms scaling more than linearly with
the dimension d or the number of samples n quickly become unusable
for large collections. Although this might seem obvious for complex
learning methods, it turns out that even answering basic queries or
computing simple statistics can be costly owing to the multiple charac-
teristics of data collections listed in Section 1.1.2, and in particular in
the streaming model when data cannot be stored.

For many applications however, computing only an approximation
of the desired quantity, or providing an answer which holds with
high probability in the case of a binary query, is sufficient. A wide
range of “sketching” algorithms, which rely on the computation of a
small' synopsis of the dataset — often geared towards specific kinds
of queries/statistics —, have been introduced for this purpose. In the
database literature, these methods are known as approximate query
processing techniques.

3.1.1 Approximate estimation

Approximate query processing methods can take different forms, but
always share some common ideas. Firstly, they rely on stochastic quan-
tities, i.e. the sketch computation involves randomness or hash func-
tions?. Then, they provide only approximate answers: in the case of the
estimation of a numerical quantity3, a sketching method will typically
provide an approximation which is, with probability 1 — §, within a
factor [1 — ¢, 1 + €] of the quantity to be estimated, where §,¢ > 0 are
ideally both as small as possible. We will use these notations in the
next paragraphs. Finally, the size of the sketch is often a parameter,
and theoretical guarantees typically provide a lower bound on it to
obtain e-approximations with probability 1 — 4§ for ¢, § given.

The synopsis, i.e. the sketch?, is often designed such that it can be
updated when new data samples arrive. Most often, the data samples
are all processed in the same manner, i.e. in a way which is independent

* Sublinear with respect to the dataset di-
mensions.

*In the following, we call a hash func-
tion a function which maps its entries to
a finite-dimensional space (typically a
string of bits) while minimizing the risk
of collisions, i.e. the fact that two differ-
ent inputs will produce the same hash.
A hash function can furthermore be effi-
ciently evaluated.

3For a binary query, one would sim-
ply bound the probability of returning
a wrong answer.

The word “sketch” takes here a broader
meaning compared to Chapter 2. It sim-
ply refers to a small summary of the data,
but is not necessarily an empirical aver-
age of some feature function.

of previous samples. Most importantly, it is useful in practice to design
sketches that can be merged after being computed, so that the sketch
of a collection can be computed by defining a partition of the samples,
sketching each group of samples independently, and then merging the
sketches obtained that way.

The celebrated Bloom filter [115], proposed in 1970, satisfies this
property. This compact data structure allows, by combining multiple
hash functions, to approximately keep a track of elements that have
already been seen in a stream. It will never produce false negatives®,
and the probability of having false positives can be carefully controlled.

3.1.2 Linear sketches for frequency moments

For several applications, it makes sense to represent the data stream
as a single vector c¢ (never explicitly stored) initialized at zero, each
update then consisting in increasing one entry of this vector. This is
particularly useful to count occurrences of categorical quantities in a
domain of known cardinality®, the vector being then just a collection of
counters, and each update adding +1 to the relevant counter. Linear
sketches [116, Section 5], which are computed from such a vector via a
linear transformation, can be merged by a simple addition. Since their
introduction, they have been used for a wide range of applications, and
production-quality libraries exist”.

A seminal example is the Flajolet-Martin sketch [117] which can
be used to count the number of distinct elements in the stream (i.e.
compute |c|,), and which has been later refined [118, 119]. It relies on
a binary array B of b bits, all initialized to zero, and on a hash function
f taking values in [0, 2° — 1]. For each sample element in the collection,
the algorithm computes the position (between 1 and b) of the least
significant bit of the hash of the element which takes the value 1, and
sets to 1 the corresponding bit of B. Hence if fis uniform for the data
at hand, B should contain almost only ones on the lowest bits, and
almost only zeros on the highest bits, with a phase transition located
around log(|c|)-

Another well-known example is the AMS?8 sketch [120], which is
obtained by multiplying ¢ by a random matrix with i.i.d. Rademacher?
entries. Initially introduced to approximate moments of the vector c,
i.e. quantities of the form £, = 2:1 cf for some k € IN (and where !
denotes the dimension of c), this sketch has proved to be very useful to
solve approximately various related queries'®. The size of this matrix
can be chosen to yield a sketch of size ©(¢ % log(1/4)).

Count-min sketch [122] has later been introduced to estimate vari-
ous quantities on c, but especially provide accurate estimations for the
largest entries, i.e. allow to detect the elements which appear a lot in
a stream, known as the heavy hitters. The sketch size here also scales
with ¢ in ©(¢72).

Other constructions and variants have been proposed. For instance,
sketches which make use of random matrices most of the time have
equivalents relying on structured transforms to reduce the space com-

59

5 The bloom filter is always correct when
it reports that an element has never been
seen.

®Otherwise, a first hashing operation
can be used to get back to a finite-
dimensional domain of controlled car-
dinality.

7e.g. https://datasketches.
apache.org/.

8 Following the name of the authors,
N. Alon, Y. Matias and M. Szegedy.
%i.e. taking values +1 with probability

1
3 each.

Such as estimating join sizes in
databases, i.e. inner products between
vector of counts [121].

https://datasketches.apache.org/
https://datasketches.apache.org/

60

plexity. We refer to the work of Cormode [116, 123] for a more extensive
overview.

3.2 DIMENSIONALITY REDUCTION TECHNIQUES

Dimensionality reduction, i.e. the fact of mapping all the samples
(X;)1<i<n to a subspace of smaller dimension, has proved to be another
valuable tool to efficiently run standard learning framework on large
collections. The applicability of this method naturally depends on the
task at hand, but in many contexts using a dimensionality-reducing
operator which e.g. approximately preserves distances between data
points might be sufficient to solve the learning task.

It can be used alone when the dimension d is large but the number
of samples n is reasonable, as an alternative to streaming algorithms or
methods which explicitly try to reduce the number of samples which
will be presented in Section 3.3. However, when both d and n are large,
it could be meaningful to reduce the dimensionality as a preprocessing
step, and then still reduce the number of samples or rely on a streaming
algorithm.

We stress that applications of dimensionality-reduction techniques
are not limited to learning and also include for instance exploration,
denoising or visualization [124].

3.2.1 Data-agnostic approaches

A seminal result is the Johnson-Lindenstrauss (JL) lemma, which states
that it is possible to embed a set of n points into a lower-dimensional
space of dimension scaling in log(n) — and independent of the initial
dimension — while approximately preserving its geometry, as depicted
in Figure 3.2.

Lemma 3.1 (Johnson-Lindenstrauss [125, Lemma 1])

For any collection X = {x,,...,x,} € R? of n points (here seen
as a set rather than a matrix) and ¢ €|0, %[, there exists a map
f+ X — R™ such that f satisfies a restricted isometry property**
on X — X with constant ¢ provided m = ¢ ?log(n).

Although the lemma is often simply formulated as an existence
result, it turns out that f can in practice be chosen as a linear random
operator. Multiple proofs of the result exist, with explicit and different
constructions of f. Dasgupta and Gupta addressed the case where f is
the application of Gaussian matrix [126], while the original proof of
Johnson and Lindestrauss uses a (scaled) orthogonal projection onto
a random m-dimensional subspace' [125]. In the later case, we also
refer to [127, Section 5.3] for a concise proof relying on the concen-
tration of Lipschitz functions on the sphere and rotation invariance
arguments. The results holds more generally for matrices with sub-
Gaussian entries [128, 129] or structured constructions [130], which
have the benefit of computational efficiency [130]. We will discuss

f(x;) « & Ix; —x;llo
.

\' Fx;)

R™ .

Figure 3.2: For m large enough, random
embeddings behave like approximate
isometries: distances between points are
approximately preserved.

11. Cf. Definition 2.1, which we im-
plicitly extend to non-linear operators.
Stated otherwise, for any x;, x; € X,
(L—e)lx; — x5 < [£(x;) = F(x;)]5 <
(14 &)lx; —x43-

> We mean here a subspace uniformly
drawn in the Grassmanian Gr(m, R%).

more extensively the design of random structured matrices in Chap-
ter 5. The size m = ¢ ?log(n) was shown to be optimal, first for the
setting where fis further required to be linear [131] and more recently
for arbitrary transformations [132].

The idea of using data-agnostic dimensionality reduction to learn
efficiently from the reduced embeddings has been successfully used
for many tasks, such as SVM [133] or learning union of subspaces [134,
135]. We also note that any matrix distribution producing efficient
Johnson-Lindenstrauss embeddings will also generate matrices sat-
isfying the restricted isometry property for sparse vectors [47]. In
the other direction, a matrix satisfying a restricted isometry property
defines optimal (in dimension) Johnson-Lindenstrauss embeddings
when randomly flipping the signs of its columns [136].

Hashing We focused so far on the JL result because it is fundamen-
tal tool, but other approaches have been considered as well. Some
works achieve for instance an approximate isometry with respect to a
kernel-norm rather than in /,-norm. Random Fourier features (cf. Sec-
tion 2.3.2) can naturally be used to approximate kernels, but the result-
ing features can be further reduced to small binary codes while approx-
imately preserving the geometry'3 between all pairs of points [137].
Note that the quantized sketches of Schellekens et al. mentioned in
Chapter 2 are closely'4 related to this approach [104], although the
features are then further averaged.

Locality-sensitive hashing [138] and related hashing techniques
have also been extensively studied as a way to provide compact em-
beddings for large-scale similarity search. The hashing functions are
however chosen in this case to favor collisions (i.e. produce close em-
beddings) for data samples which are neighbors, but do not necessarily
come with guarantees for points which are distant from each other.
Product quantization techniques [139] are also a standard alternative
to produce compact codes, and tend to scale better with the dimension
compared to hashing-based techniques.

All these methods relying on quantization differ from Johnson-
Lindenstrauss type embeddings by the fact that they are not linear,
but they most often can still be computed efficiently and are thus used
extensively for applications going beyond nearest neighbors search.

3.2.2 Adaptive approaches

Another way to perform dimensionality reduction is to use the data
itself in order to decide how to reduce it; such methods are said to be
adaptive, or data-dependent.

The most standard example is certainly principal component anal-
ysis (PCA) [140]. We introduced PCA as a learning task on its own
via its loss function in Definition 1.1, but naturally the optimal k-
dimensional subspace (for any k£ > 0) for this loss can be used to
define k-dimensional features, which can in turn be used to solve vari-
ous learning tasks with a reduced computational complexity. In this

61

3 In terms of Hamming distance for the
binary codes.

* Apart from the averaging operation,
the work of Raginsky et al. differs
from [104] in the fact that quantizations
are performed according to randomly
chosen thresholds.

62

regard, PCA will return the subspace maximizing the variance of the
(projected) data. Hence when data is centered, and provided that
all the components have similar scales, the associated features are a
natural choice in many contexts. Multiple extensions of the method
exist, such as probabilistic PCA [141] which accounts for more generic
probabilistic models, robust PCA [142], or sparse PCA [143] where
the subspace basis is further required to be sparse. Performing PCA in
a feature space associated to a kernel is known as kernel PCA [144]
and is also widely used.

Other standard approaches include canonical correlations analysis
(CCA) [145], to linearly reduce two sets of variables while maximiz-
ing the correlation between the produced features, or linear discrimi-
nant analysis when measurements come with labels and are used to
maximize separation between classes. Independent component analy-
sis [146] is also commonly used to maximize statistical independence
between the produced features, and in some contexts can be meaning-
ful for dimensionality reduction. We refer to the work of Cunningham
et al. for a more comprehensive survey of linear'> methods [147].

Feature selection The methods previously mentioned aim at produc-
ing m <« dnew features, but another way to proceed would be to select
m of the existing features. Uniform (non-adaptive) sampling can be
used but will often be inefficient. Various adaptive sampling strategies
have thus been developed to keep the most “informative” features.
The idea of adaptive sampling can also be applied to sample the data
points rather than the features — i.e. sampling columns rather than
rows of the data matrix —, and we thus postpone to Section 3.3.2 the
presentation of the method.

Many other deterministic approaches exist to select the optimal
features for the task at hand. We refer the interested reader to the
survey of Chandrashekar and Sahin [148]. Note that albeit selecting
the chosen features is a linear operation, choosing which features to
keep can require more complex and non-linear operations.

Non-linear techniques We mainly focused on linear dimensionality
reduction techniques so far, but non-linear adaptive methods have been
developed as well. In particular, many techniques have been proposed
to learn (nonlinear) hashing functions from the dataset. We refer to
the recent survey of Wang et al. for this category of methods [149].

Autoencoders have also emerged as a natural way to perform non-
linear adaptive dimensionality reduction [150]. They are deep neural
networks which have input and output layers of similar dimensions,
and intermediate layers of smaller dimensions, with typically one
“bottleneck” layer which is much smaller than the input dimension. By
training such a network to approximate the identity function, one can
use after training the features corresponding to the bottleneck layer as
compact features of reduced dimensionality. These models are much
more expressive compared to linear methods, but incur a large training
cost and require large training collections.

*Here and in the following sections, we
mean by linear dimensionality reduction
that the new features are obtained from
the original data via a linear transforma-
tion.

3.3 REDUCTION OF THE NUMBER OF SAMPLES

We discussed so far sketching approaches, which compress the whole
dataset into a small summary, and dimensionality-reduction tech-
niques which only make it easier to work with high-dimensional data
but leave the number of samples in the collection intact. In this section
we focus on coresets, which are small (weighted) subsets of the data
collection which approximate the risk of the whole dataset.

Coresets are often simple to implement and to work with, but their
design relies on various mathematical tools, and going through all the
different approaches is out of the scope of this chapter. Moreover, many
different definitions of a coreset coexist in the literature, which can be
confusing. We focus here on a simple introduction and definition in
Section 3.3.1, and briefly discuss in Section 3.3.2 how subsampling the
collection can produce proper coresets.

We refer the interested reader to the recent works of Feldman [151],

Phillips [152], and Bachem et al. [153] for more comprehensive overviews,

and also to the work of Munteanu and Schwiegelshohn [154] for a pre-
sentation of the different tools used for coreset design. Another didactic
introduction can be found in [155].

3.3.1 Coresets

Many variants exist for the definition of a coreset. If we focus on
the context of statistical learning, where we recall’® that a learning
task is defined by a risk function R : H x P(X) — R, a coreset of a
collection X is broadly speaking a subset of the data which uniformly
approximates the risk associated to X over H.

Definition 3.2 (Coreset): Let X be a dataset with associated em-
pirical distribution 7x. A (strong) (r,¢)-coreset of X for the risk
function R isasubset S = {sy, ..., s,.} of r points of X and weights
(o, ..., o) in the probability simplex satisfying

3C > 0,Vhe H, (1—&)R(h,mx) < CR(h,7g) < (1+&)R(h, Tx),
(3-1)

r

where mg = 37| a0 .

Note that the weights ¢, ..., o, are constrained in the probability
simplex only in order to define a probability distribution and hence to
fit with our definition of the risk, but the presence of the normalization
constant C actually means that arbitrary non-negative weights can
be used — although one will typically have C' = 1 for homogeneity
reasons.

We list here the most common variants of this definition that can be
found in the literature.

1. The weights a4, ..., o, are sometimes imposed to be a; = ... =
1
o, = ;

2. The above definition is strong in the sense that approximation
must be uniform over H. A construction which only satisfies the

63

' Cf. Section 1.1.1. We recall that H de-
notes the hypothesis space.

64

inequalities in (3.1) on a subset of H (for instance around the risk
minimizer) is called a weak coreset.

3. Insome papers, S must simply be a set of r points, but these should
not necessarily belong to X. In the following, we refer to such
constructions as generalized'7 coresets.

A desirable property for coresets is to be composable, which means
that if S;, S, are respectively coresets of two datasets X, X,, then
S; US, is also a coreset for X; UX,. This often means that it is
possible to start from S; US, to produce a further reduced coreset
S; C S; US,. See for instance [156] for an application on various
diversity-maximization tasks, i.e. tasks where a given metric between
points in the coreset is maximized.

Note that this is highly reminiscent of the need to produce sketches
that can be merged after computation discussed in Section 3.1. This
should come at no surprise as this property is the key to handle data
streams and for distributed learning.

Cardinality of the coreset It should be noted that some authors also
use the word coresets to denote collections of dimensionality-reduced
features, even when the number of samples is the same as the initial
collection'® [151, Section 4.1]. We prefer to make a clear distinction
between the two approaches when possible, hence r is always assumed
to grow sub-linearly in n in this section.

A natural goal is to find coresets which are as small as possible. The
size r will typically grow polynomially with 1/e. Some constructions
are probabilistic and hold only with probability 1 — §, in which case r
usually also scales polynomially with log(1/6).

Construction Definition 3.2 is very generic, and multiple methods
can be used to derive coresets in practice. Randomly subsampling
the collection is the simplest and most common way to reduce the
number of samples, but uniform sampling will not always yield a
proper coreset in terms of approximation and more subtle sampling
schemes are required; we discuss this approach in Section 3.3.2. Linear
sketching approaches — i.e. multiplying X by a dense random matrix
on the right — have been considered and compared to subsampling
schemes, see e.g. for least-squares regression the work of Raskutti and
Moheney [157]. They are computationally efficient, but however can
at best yield generalized coresets by definition.

Histograms and other covering methods of the input space have been
used extensively — each point of the coreset representing for instance
one histogram bin —, but we do not review such approaches here as
they scale poorly® with the dimension and hence are of limited utility
for high-dimensional learning. Note however that most of the early
papers on coresets relied on such constructions, see e.g. [158].

Deterministic constructions also exist. In some settings, for instance
in computational geometry for the computation of the minimum en-
closing ball or other closely related problems, coresets can be derived

*7 No particular naming convention exists
for this setting in the literature.

*In this case, Definition 3.2 must be
adapted as the risk is defined on P(X).

“i.e. exponentially.

from convex optimization techniques [154, Section 3.2]. Points are
then added to the coreset one by one. Connections of such greedy
approaches with the Frank-Wolfe algorithm are discussed in [159].
Kernel herding approaches [160] for kernel density estimation can also
be interpreted in this context [161, 162].

For high-dimensional clustering, efficient streaming deterministic
algorithms have been proposed [163, 164], but often combine ideas
from deterministic coresets literature with dimensionality reduction
methods — e.g., the intermediate representation which is produced
is not in the input space, and hence does not satisfy Definition 3.2
although it can be used to approximate the risk. When data is sparse,
preserving high-dimensional but sparse vectors in the input space
might be more desirable than using dimensionality-reduction tech-
niques which will produce dense features. Dedicated deterministic
solutions have been proposed for this setting (assuming d > n), for
instance for k-means [165] and PCA [166].

Limitations It should be mentioned that Definition 3.2 is a broad
definition, and coresets of small sizes may simply not exist for some
problems. Impossibility results have for instance been provided for
the 2-slab®® problem [167], or in another context for Poisson depen-
dency networks [168]. Even when existence can be proved, explicit
constructions are sometimes too expensive to be useful in practice.

3.3.2 Subsampling

Randomly subsampling a dataset is the most intuitive way to reduce the
number of samples in it. In some contexts, subsampling can produce
sets of points which are proper coresets according to Definition 3.2.

Uniform sampling Let S be a set of r points drawn i.i.d. uniformly
in the collection X, with weights a; = ... = a,, = 1/r, and let 7g =
> i1 a;05 denote the associated distribution. Thus for any h € H,
R(h,7g) is an unbiased estimator of R(h, mx) and its variance can be
roughly bounded as follows

Var(R(h, g)) = %Varmu(x)(l(h,x)) < %E(l(h,x)z) < ZR(h, X2

where [denotes the loss associated to the risk function R. To derive a
sufficient condition on the cardinality of S in order to obtain a coreset,
we can apply Chebyshev’s inequality as follows

P[R(h, 7g) — R(h, mx)| > eR(h, x)]

<P||R(h,mg) — R(h,7x)| > 5\/5 Var(’R(ths))] < %

With this approach, it is thus sufficient to choose 7 = n/(£24) to obtain
a valid coreset with probability 1 — §, which is of limited utility as we
recall that our goal is to obtain a coreset size which is sub-linear in n
(and ideally independent of n). Although this analysis might look

65

2% A slab refers in this context to the por-
tion of the space comprised between two
parallel hyperplanes. The 2-slab prob-
lems consists in covering the data points
by a union of two slabs of minimum
width.

66

simple, one can actually show for tasks such as k-means that having r
on the order of n is indeed necessary to obtain a proper coreset via
uniform subsampling®'. This is typically the case when a single point
is responsible for the largest part of the risk for some i € H. Taking
into account the contribution of each point to the risk thus helps to
reduce the required coreset size, yielding the so-called “importance
sampling” strategy.

Importance sampling The idea of using non-uniform random sub-
sampling in coreset design was introduced by Chen [169] for k-means
and k-medians problems, yielding a coreset size polynomial in d. How-
ever, the key idea to reduce the coreset size is the notion of sensitivity

introduced by Langberg and Schulman [170]. In this context**, and
for statistical learning applications, the sensitivity of a point x € X for

a dataset X with empirical distribution 7x can be defined as

~ Li(h,x)

) R R >
It captures the proportion of the risk which is due to x (in the worst
case on h € H), and thus indicates how important it is to keep x if
one wants to preserve the overall risk when subsampling. The idea
of Langberg and Schulman is hence to favor the samples which have
a high sensitivity when subsampling. Naturally, computing exactly
the sensitivities of all the samples can already be expensive. We now
introduce the notion of importance sampling, and we will see just
below that only computing an upper bound of the sensitivities can
already be helpful.

Importance sampling is a generic method which is commonly used
in order to reduce the variance of a Monte-Carlo estimator. For a given
probability distribution p over a domain D and function f defined on
the same domain, the classical Monte-Carlo method suggests that the
integral F' = fD (z) dz can be estimated by >y f(x;), where

1.5

Tyy ey Ty, ™~ p Importance sampling relies on the observation that, if
xq,..., T, are samples drawn i 1 i.d. according to a different probability
dlstrlbutlon g, the quantity - Zz L w(z;) f(z;) where w(z;) = % i

still an unbiased estimator of F. This tweak can be leveraged when one
has access to f(z,), ..., f(z,,) without being able to control the distribu-
tion of the samples z, ..., z,,. However, even when one is free to sample
f as desired, it can be useful to choose on purpose a distribution ¢ # p
to modify the properties of the obtained estimator, and in particular to
reduce its variance.

In our context, one can show that for any fixed h, sampling each

point x; with a probability ¢(x;) & (and properly reweighting

the samples) indeed minimizes the va}lbrlgn)ce of R(h,ng). However, as
we want (3.1) to hold uniformly, a workaround is to use the worst case
on h € H, which yields precisely the definition of sensitivity s given
in (3.2). It can then be shown [171]?3 that, for any upper bound §

on the sensitivity (i.e. such that Vx € X s(x) > s(x)), defining S =

* At least without additional assump-
tions on the data distribution, one can
manually build counter-examples. See
for instance [153].

>>We will see in Part IV that the word

“sensitivity” has a different (albeit re-

lated) meaning in the context of privacy
preservation.

3 See also [153, Section 2.5] for a didactic
derivation.

Y xex 5(x), the weighted subset obtained when performing importance
sampling with probability ¢(x;) = s(x;)/S yields for § > 0 a proper
(r,€)-coreset with probability 1 — ¢ provided that

T2 §<D+log<§>). (3.3)

where D is the pseudo-dimension of the class of weighted losses
{v(h)I(h,-)/q(-)|h € H} for some weighting function v, i.e. a measure of
the complexity of this class of functions. We refer the reader for instance
to [172, Chapter 4] for a precise definition of the pseudo-dimension,
and its connection with the Vapnik-Chervonenkis (VC) dimension,
that it generalizes. Note that, this result being established, finding a
good upper-bound for the sensitivity is often the most difficult step.

Often, obtaining a good sampling strategy already requires to have
a reasonable estimation of the solution or of the data density. This
chicken-and-egg problem can be addressed via an intermediate sub-
set construction®4, which is larger in size and weaker in guarantees
compared to a proper coreset, but which is sufficient for importance
sampling.

With this approach, a coreset of size r = dk?/e? was for instance
obtained for k-means [170]. The notion of sensitivity was later ex-
tended by Feldman and Langberg [173] for various tasks such as k-
medians or subspace clustering. Other applications of this method
include dictionary learning [174], Gaussian modeling [175] and [,
regression [176]35.

Note that although some of these constructions can be adapted
to the streaming scenario, the generalization is not obvious. Coreset
sizes often vary depending on the considered coreset definition and
setting (e.g. coreset / generalized coreset / streaming), and providing
a summary of the different existing contributions and coreset sizes is
out of the scope of this chapter. We refer for instance to [151, Table 1]
for a list of coresets for the k-means clustering problem.

Leverage scores We introduced above a sampling distribution which
directly depends on the loss function, but other variants exist in the
literature. For instance, Tremblay et al. showed that coresets can be
obtained by subsampling the data points using determinantal point
processes [177], which promote diversity in the set of selected points.
We do not dwell on this idea here, but rather introduce statistical
leverage scores, which are another standard tool which has been used
extensively for adaptive sampling. Assuming XX is invertible, the
leverage scores are defined as the diagonal entries of the matrix H =
XT(XXT)~1X. This matrix has a nice interpretation for the linear least-
squares regression problem (cf. Definition 1.4), where one aims at
minimizing |X”h — y]||, over h € R? for fixed X € R*" and y € R™
Indeed, the solution of this problem is h* = (XX*) 'Xy, and thus
the predicted labels y* = X h* satisfy y* = Hy. Hence the entry (i,)
of H characterizes the impact of y; on the prediction y;. The role of
leverage scores to detect useful data points — and potentially outliers —,

A good example of that is («, 3)-
bicriteria approximation, where one pro-
duces a subset which is 8 times larger
than desired, and gives a risk for the op-
timal hypothesis which is in a factor o of
the true optimal risk.

* This work is also based on sampling
but does not rely on the sensitivity.

68

in particular for least squares regression, is well known and has been
identified a long time ago [178].

As H corresponds to the projection matrix on the row space of X, it
turns out that the leverage scores can be computed from any basis of the
row space of X. For instance, if X = UXV7 is a SVD decomposition of
X, then H = VV” and the leverage scores correspond to the squared
ly-norms of the rows of V.

Computing the leverage scores can be a challenge on its own, as
extracting a basis of the row space already costs an SVD or QR de-
composition. We will see in Section 3.4 that randomized approximate
methods exist for these decompositions; such ideas have been used
to reduce the computational complexity of estimating the leverage
scores [179] from ©(nd?) to ©(ndlog(d)) — assuming here n > d.

Note that, although we used the linear regression problem to provide
some intuition, the leverage scores are independent of y whereas the
sensitivity defined above depends explicitly on the loss function, which
itself is a function of y.

It is also interesting to note that multiplication of X” (on the left)
by an orthogonal matrix?®, tends to make the leverage scores of the
resulting matrix more uniform. This can be used as a preprocessing
step, and one can then subsample the columns of the resulting matrix
uniformly, without computing any leverage score [180]. We refer the
interested reader to [181] for more insights on leverage scores in general,
and in particular to [181, Section 4.4.1] for this idea.

3.4 RANDOMIZED LINEAR ALGEBRA

We tried so far to make a clear distinction between dimensionality-
reduction techniques (Section 3.2) and coreset methods (Section 3.3),
which come with different interpretations. In practice however, the
tools on which they rely are similar as both approaches compute a
“sketch” which can be expressed for some matrix S as SX in the first
case, and XS for coreset methods. Furthermore, in both cases S can be
either dense (e.g. with normal entries), or correspond to a subsampling
operator.

In this section, we explain how these sketching techniques can be
combined to perform standard linear algebra tasks. Indeed, many tasks
in linear algebra are ubiquitous and are used as building blocks to solve
other problems. We focus on the low-rank approximation problem
which has many useful applications — such as the approximation of
kernel matrices —, but which can also be interpreted as a learning task
itself.

3.4.1 Randomized low-rank factorization

A fundamental problem in linear algebra is to compute the singular
value decomposition (SVD) of a matrix. This decomposition is widely
used, and can for instance be leveraged to solve the PCA problem
(Definition 1.1) — assuming centered data. In the last two decades,

26 For instance with a structured HD
block, where H is a Hadamard matrix
(see Chapter 5) and D a diagonal matrix
with uniform i.i.d. +1 entries.

randomization has proved to be useful in this context as well. We
provide in this section some considerations on this particular problem,
and refer the reader to the works of Martinsson [182] and Kannan and
Vempala [183] for up-to-date overviews of other standard tools and
problems®7 in randomized linear algebra.

Randomized SVD We denote again X the d x n data matrix, which
can here contain complex entries (we thus use -* to denote the conjugate
transpose). Halko et al. proved in a seminal work [184] that a sketch of
the form Y = X, where 2 has for instance i.i.d. normal entries, can be
sufficient to obtain a good approximation of the action of X. Here the
matrix €2 is chosen of size n x [, with I being much smaller than n. That
is, if we recover a matrix Q whose columns form an orthonormal basis
for the range of Y — this can be done via a QR factorization of Y —,
and choose the number [of columns of €2 to be slightly larger than a
target rank k, then with high probability

IX-QQX]~ min [X-Z (34)
This fact is related to the observations made on random approximate
isometries in Section 3.2.1, but is used here in a slightly different matter.
The error in (3.4) is written in spectral norm but could also be measured
in Frobenius norm, in which case the quantity | X — QQ*X|3 matches
the PCA risk R(range(Q), X), where range(Q) denotes the subspace
spanned by the columns of Q. Although results formulated with
respect to the spectral norm tend to be more meaningful®3, both kind
of bounds appear in the literature.

An approximate singular value decomposition UXV* of X can
then be recovered from Q, for instance by computing the SVD UZV*
of Q*X, and then defining U = QU. Given that this procedure is
entirely deterministic —once Q is computed —, the approximation
error satisfies

IX - UV = |X - QUEV*| = |I-QQ"X]|,

i.e. only depends on the estimation of the range of X, and thus on
how close the approximation in (3.4) holds. Halko et al. provide
precise bounds according to the optimal error®?, first in a deterministic
setting [184, Theorem 9.1] and then for a Gaussian matrix 2. In the
latter case, it is shown that

[T = QQ"X| < Oy (1 K)oy + oL K) (Y 0F)'/?
>k

with a failure probability decaying exponentially with the oversampling
parameter [— k, where C, C, are functions of only [and &, and where
Cs(1, k) also decays quickly with I — k. Hence using a sketch size of
the kind I ~ 2k will already ensure an error which is within a small
constant factor of the optimal error.

This yields an algorithm of complexity ©(dnl + (*(d + n)) instead
of ©(min(dn?, d*n)) for a deterministic SVD. Structured operators can

69

*7 For instance, regression or matrix mul-
tiplication are also standard tasks which
can be randomized.

#In this regard, see [182, Remark 2.1].

#1If o0y > o9 > ... denote the singular
value of X, then the optimal error for
a rank-k approximation is o, ; in spec-
tralnormand }°,. , 2 in squared Frobe-
nius norm according to the Eckart-Young-
Mirsky theorem [185].

70

naturally be used here as well to reduce the computational complexity
of the linear operation — the exact complexity then depends of the
chosen construction, but this will typically reduce the cost of the linear
operation from nld down to nilog(d).

Single-pass approaches This randomized approach to SVD compu-
tation can be decomposed in two steps: first finding an appropriate
basis Q, and then using Q" to reduce the dimension and solve a smaller
problem. It could then fit in the category of dimensionality-reduction
techniques, via a sketch of the column space. When n is large, com-
puting the sketch Y = X is reasonable, but accessing a second time
the data to compute the matrix Q*X might be too expensive, or sim-
ply not possible when X is provided in a streaming setting3°. This is
however necessary in the general case3" as the sketch Y only contains
information about the column range.

Note that if one only wants to solve the PCA problem as defined
in Definition 1.1 — i.e., find the optimal subspace and not the weights
associated to each sample — the sketch Y already contains the useful
information to approximately solve the problem. Assuming a full
decomposition is required, one way to avoid accessing the data multiple
times is to sketch both rows and columns spaces simultaneously, i.e.
compute two sketches Y = XQ and Z = ¥X where both €2 and ¥ are
random. This approach is already discussed in [184, Section 5.5], and
an in-depth analysis has later been proposed by Tropp et al. [186].

Boutsidis et al. also considered combining the quantities Y, Z with
a third sketch of the form EXT where both E,T" are random [187],
yielding algorithms with an optimal space complexity — in regard of
the bounds provided by Clarkson and Woodruff [188].

Sampling It may sometimes be more desirable to use instead of Q
a combination of a few columns of X, for instance to preserve some
properties of the data such as sparsity. Coreset constructions based
on subsampling presented in Section 3.3.2 can be leveraged in this
case [166]. Subsampling both columns and rows3? yields the family
of interpolatory and CUR decompositions [189] (see also e.g. [190,
Section 10 and 11]), which we do not detail here. We discuss below the
case of Nystrom approximation with subsampled rows and columns
of a positive semi-definite matrix.

3.4.2 The case of positive semi-definite matrices

The ideas presented above can be adapted to preserve specific structural
properties of the considered matrix, such as positive semi-definiteness.
We considered so far factorizing the data matrix X, but the method can
be used in various settings, and is particularly useful to approximate
large kernel matrices.

Indeed as explained in Chapter 2, most learning approaches relying
on kernel functions require computing the n x n kernel matrix K with
entries K;; = r(x;,x;), where x denotes the kernel function used.

3We only mentioned so far the
case where the sample (x;);<;<, are
streamed, but we can more generally con-
sider here the stream X = X; + X, + ...
where the X, are all d x n (possibly
sparse) matrices. The model where each
X, has furthermore only one non-zero
entry is referred to as the turnstile model
in the literature.

3 The setting of symmetric or positive
semi-definite matrices is different as the
row and column ranges then coincide,
see below.

3 Typically using leverage scores.

Random features can naturally be used to approximate K —i.e., one
can approximate K by a sum of rank-one random estimators —, but low-
rank approximation strategies can also be leveraged, as an alternative
to random features.

Positive semi-definiteness is also a natural constraint when working
with covariance matrices, or Hessian matrices in optimization methods.
Depending on the setting, different approximation schemes can be
leveraged.

The Nystrom method One way to approximate a positive semi-definite
(psd) matrix M is to compute a Nystrom approximation

M = (M¥)("ME)|(MP)* (35)

where - denotes the Moore-Penrose pseudoinverse, and ¥ an n x r
matrix. The quality of the approximation can be evaluated for different
choices of ¥, but random matrices will typically be used.

When ¥ has normal entries, we get a method which is similar to
the procedure for randomized SVD presented in Section 3.4.1, with
the difference that the row and column ranges of M are here identical
and thus both captured by Y = MW at the same time. Approximation
guarantees for this scheme are closely related to the ones discussed
in Section 3.4.1 [191, 192]. This approach requires having access to
the full matrix M, but can be useful for instance when working with
a covariance matrix which appears as a stream of rank-one updates.
It has also been used for kernel ridge regression33 [193], and more
generally when applied on a kernel matrix its effect can be interpreted
in the related RKHS [194]. Variants have also been proposed for psd
approximation [195] —i.e. the output matrix is psd low-rank, but the
input matrix must not necessarily be exactly psd.

Nystrom with partial evaluation When working with a kernel ma-
trix M = K, one usually wants to avoid computing and storing the full
matrix. It is then judicious to choose the columns of ¥ in the canonical
basis, so that (3.5) can be rewritten

K=KK/ K (3.6)

for some set of indexes I of size [, where K is the n x [matrix obtained
from K by subsampling the columns of indexes in I, and K | is the
[x I matrix obtained by further subsampling the rows of K. The goal
of this factorization is that only K; and K; ; need be stored, and not the
whole approximation K. Thus computing the decomposition requires
nl kernel evaluations — or approximation with random features —, the
O(n?) space cost is avoided and the factorization can after computation
be used for efficient linear algebra operations.

This approach was initially suggested34 by Williams and Seeger [197],
and then used extensively in the kernel literature. Following previous
discussions regarding subsampling strategies, the set of indexes I can
here again be sampled uniformly or using leverage scores3®. Uniform

71

33 See below for a definition.

34 We refer here to the approximation
of kernel matrices, but the Nystrom
method is much more general and takes
it name from a seminal paper of E.J. Nys-
trém [196] (in german).

% Greedy methods have also been con-
sidered, but often incur higher computa-
tional costs.

72

sampling has initially been used [197], and sufficient sketch size [to
obtain a near-optimal risk levels have been provided, e.g. for kernel k-
means [198, 199] or kernel ridge regression [200]. We recall that these
problems can be seen as generalizations of theirs linear equivalents
(cf. Definitions 1.2 and 1.4), where the input data is pre-processed via
the feature map associated to a chosen kernel. This is why the kernel
matrix appears in the solution — at least for kernel ridge regression,
where we have a closed form.

Ridge leverage scores The standard approach for adaptive sampling
in the context of kernel methods is to compute the ridge leverage scores,

s(K,\) = K(K +), (3.7)

which are often expressed like here with a regularization parameter
A > 0. These scores can be seen as a natural generalization of the
“standard” leverage scores introduced in Section 3.3.2, which had a
natural interpretation with respect to the linear least squares problem,
where one wants to minimize |X”a — b over a. The ridge leverage
scores appear when adding a ridge normalization term A|a||3 to this
objective, and when replacing the data X by the matrix of features ® =
[®(x,), ..., D(x,,)], where ® denotes the feature map corresponding to
the kernel x used to compute the kernel matrix K. Indeed, in that
case the objective to minimize becomes |®”a — b|3 -+ A|a|3, and the
solution expresses a* = (®&®7 + \I)"'®b, which can be rewritten
via a special case of the Woodbury identity [201, eq. (158)] as a* =
®(®7® + \I)"'b, hence b* = ®7a* = K(K + A\I) 'b.

Once the ridge leverage scores have been computed, one can sample
the column ¢ with probability s(K,);;/ tr(s(K, A)). Learning guaran-
tees can often be obtained using ridge leverage scores using a smaller
number of samples compared to uniform sampling for tasks such as
kernel ridge regression [202] or kernel PCA [203].

Just as with plain leverage scores, computing the ridge leverage
scores can be a challenge on its own, but efficient methods have been
proposed — similarly to what has been discussed in Section 3.3.2 —,
typically relying on recursive approximations [203, 204].

Note that efficient and practical frameworks often combine together
multiple tools. For instance, low-rank approximation of kernel matri-
ces can efficiently be computed by combining the Nystrom method
(using subsampling) with the linear sketches from Section 3.4.1 [205]
to reduce the computational complexity. In another context, Rudi et al.
proposed for kernel ridge regression to combine the Nystrém approach
with pre-conditioning techniques, which allow to reduce the number
of iterations of iterative optimization algorithms [206].

We focused here on the Nystrom method, but naturally random
features introduced in Chapter 2 are another standard way to approxi-
mate the kernel matrix K, and leverage scores can also be used for this
purpose [207, 208].

Although we focused on approximation of kernel matrices, which
play a very important role in the learning literature, it should be noted
that similar techniques can be used to approximate Hessian matrices in
order to speed-up second-order optimization techniques, see e.g. [209].

3.5 CONCLUSION

In this chapter, we presented some standard tools to alleviate the com-
putational cost of learning from large collections. We mentioned a few
deterministic techniques, but most of the considered methods belong
to the category of “sketching” algorithms as they rely on computing
a small sketch of the data matrix obtained by multiplication with a
random matrix. We provide in Table 3.1 a categorization of these dif-
ferent methods (which does not include sketches from Chapter 2 nor
Section 3.1).

73

Sketching type \ operator Dense S
(e.g. with i.i.d. normal entries,
or structured variants)

Subsampling S

(i.e. with columns (or rows) in the canonical basis)

Uniform sampling

Importance sampling

— data-agnostic

- 4 adaptive —

Random projections,
JL-type embeddings
cf. Section 3.2.1

Rows/features space
(Sketch of the form SX)

Feature selection methods
cf. Section 3.2.1

Columns/samples space Generalized coresets, Uniform subsampling, Sensitivity, Leverage scores
(Sketch of the form XS) cf. Section 3.4.1 cf. Section 3.3.2 cf. Section 3.3.2
Both cf. single-pass approaches CUR decompositions
in Section 3.4.1 Section 3.4.1
N in (2 5m “with ial evaluation” N ith ridee 1
Both (Symmetric/PSD case) Nystror'n asin (3.5), Nystrot.n with partial evaluation Nystrot.n with ridge leverage scores
cf. Section 3.4.2 cf. Section 3.4.2 cf. Section 3.4.2

This table is not exhaustive, but shows the fact that random projec-
tions have been used in a variety of different settings in the literature.
We stress that the structured random matrices which will be introduced
in Chapter 5 can be (and have been) used for most methods of the
first column of the table, i.e. pretty much every time dense random
matrices are used. We will discuss in Part IV how these different meth-
ods compare in terms of privacy preservation, but we can already say
that coresets and sketching methods have been used successfully for
privacy-preserving learning; data subsampling techniques are also
known to improve privacy in some contexts.

The compressive approach presented in Chapter 2 is quite different
from these approaches, but still computes a small summary of the
dataset. Hence in the following chapters, the word “sketch” will refer
to the empirical sketch defined in (1.10) unless otherwise specified.

Table 3.1: Summary of the most com-
mon randomized “sketching” /subsam-
pling techniques existing in the literature
for efficient large-scale learning.

Part 11

ErriciENT COMPRESSIVE LEARNING

This part focuses on the design of the random matrix £ which
appears in the expression of the feature map. In Chapter 4, we study
empirically the impact of the kernel scale (and hence the scaling of £2)
when performing compressive clustering with a Gaussian kernel.
Chapter 5 shows how structured linear matrices can be leveraged to
speed-up the complexity of the framework.

Chapter 4
Learning to Sketch with a Gaussian
Kernel

Note Some ideas discussed in this chapter have been presented
to the iTWIST workshop [25].

s ExPLAINED in Chapter 2, random Fourier features' used for com-
pressive clustering implicitly define, together with a frequency
distribution A, a kernel in the data domain. For instance,
drawing the frequency vectors according to the multivariate normal
distribution A = N(O0, U%I) for some o2 > 0 yields a Gaussian kernel
K(x,y) = exp(—|x — yHg/ (202)) in the data domain as detailed in Sec-
tion 2.3.2. However, we did not discuss so far how this variance o2
should be chosen. This parameter being critical for many experiments
in the thesis, we propose in this chapter to investigate the problem in
detail via numerical simulations.

In the rest of the chapter, all the sketches are computed using ® = &,
and we denote A the induced sketching operator on probability distri-
butions as defined in (2.10). We explain in Section 4.1 why choosing o2
carefully is important, and discuss existing heuristics to do so. Sim-
ulations on synthetic data are performed in Section 4.2 to pin down
the optimal2 scale as a function of the characteristics of the dataset,
and directions for estimation of this optimal scale from the data using
sketches are discussed in Section 4.3.

4.1 ROLE OF THE KERNEL SCALE

The choice of the kernel scale has multiple impacts. If it is poorly
chosen, then the resulting distance to the empirical sketch, which is
used as the optimization criterion, will not be a good proxy for the risk
(cf. Section 1.1.1). However even when the optimization problem is
coherent with the risk function (e.g. has the same global minimizers),
a poor choice of the scale might still induce many undesirable local
minima3 and therefore make optimization impossible in practice. We
discuss these considerations in sections 4.1.1 and 4.1.2, and expose in
Section 4.1.3 the heuristics that have been proposed so far to estimate a
reasonable kernel scale.

Contents

41

43

44

Role of the kernel scale 77

4.1.1 Theoretical insights | 4.1.2 An il-
lustration with CL-OMPR | 4.1.3 Exist-
ing heuristics
Experimenting with
datasets 81

4.2.1 Impact of the sketch size | 4.2.2

synthetic

Scale-invariance | 4.2.3 Impact of the

| 4.2.4
Impact of the dimension | 4.2.5 Impact

separation between clusters

of k| 4.2.6 Impact of the frequency
distribution

Towards empirical estimation of
the separation 88

Perspectives 9o

* cf. Definition 2.5

? Because of the experimental nature of
this chapter, “optimal scale” refers in the
following to the scale which seems em-
pirically to provide the best results.

3We will illustrate this point in Fig-
ure 4.1.

78

4.1.1 Theoretical insights

From now on, we denote o2 the kernel variance. Unless otherwise spec-
ified, we compute the sketch using frequency vectors drawn according
to the distribution A = N(0, J%I), i.e. implicitly defining a Gaussian
kernel k(x,y) = exp(—|x — y|\§;(20ﬁ)) in the data domain.

If cq, ..., ¢, are the cluster centers to recover, we define

2 min
1<i#j<

£ (4.1)

X e, *Cj”z

the separation between clusters. We will see that the optimum kernel
variance is closely connected to this separation. We also recall* that
when working with random Fourier features and this distribution of
frequencies, for any 7, m, we have (using the notation x(u) = £(0,u))
|71 —moll, = [k %7 — kx5 2ra). This interpretation of the max-
imum mean discrepancy in terms of a low-pass filtering operation
with tends to suggest intuitively that the optimal kernel variance
should be no larger than £?, as locality information regarding clusters
separated by a distance € might otherwise be lost.

From a theoretical perspective, statistical learning guarantees have
been obtained [210] for compressive clustering with weighted> random
Fourier features. A separation assumption € > 0 has been shown to
be necessary® for a lower restricted isometry property to hold. Vice-
versa, learning guarantees have been established when o2 < £%/logk,
by establishing a lower restricted isometry property on the model of
bounded and e-separated mixtures of Diracs’. Yet, when o2 is too
small, reconstruction algorithms can get stuck in local minima and
theoretical error bounds become vacuous. We provide an empirical
illustration of this fact just below.

It is worth noting that the weights used in [210] might simply be
a proof artifact, and we consider in the following frequency vectors
which are truly drawn according to A 2, and the corresponding features
are not reweighted.

4.1.2 Anillustration with CL-OMPR

In order to better understand the role that the kernel variance o2 plays
in the compressive clustering approach, we propose to take a closer
look at the CL-OMP algorithm used to address the inverse problem. Its
main steps are recalled in Algorithm 4.1. Note that we use in practical
applications the CL-OMPR algorithm, which adds “replacement” steps
after the & loop iterations of CL-OMP as described in Chapter 2, but
we describe here only CL-OMP for simplicity.

In Figure 4.1, we show the evolution over iterations of the cost func-

tion appearing at line 3 of Algorithm 4.1 for three different values of

2
K

rated clusters. Atiteration i + 1, if atoms (6,),;; and weights (), <;<;

the kernel variance o, on a two-dimensional dataset made of four sepa-

have been previously selected, denoting r = § — >, _,_, a;®(6,) the

A(dy) >> .
AR r) | where R de

residual, this cost function reads 0 9{(<
notes the real part.

#Cf. Section 2.3.3.

%i.e. using a frequency distribution dif-
fering slightly from Aai , but still induc-
ing a Gaussian kernel.

© We will explain this in Chapter 10.

7 We say that a mixture of Diracs is “e-
separated” if all the Diracs that compose
it are separated by at least € in l5-norm.

6

7

Input: Sketch §, sketching operator
A, size of mixture k.

7+ 8,00 // Init

fori < 1to kdo

/* Find a new atom */

O+

A(pg) A>}
@U{ar max 9?<—,7’
& Al
/* Project to find
locations */

1
O, a<argmin

weights */
el
-3 a,A(py)

J=1

« < argmin
a>0

/* Adjust centroids

5*_2%%1(1’9]-)
0,a>0 Jj=1
/* Update residual */
J |
| 85— ijl ajA(pgj)

return the support ©, the weights «.

Algorithm 4.1: CL-OMP (Compressive
Learning — Orthogonal Matching Pur-
suit)

02 =4.4x 10" 02 =6.3x10702

Iteration 1

Tteration 2

Iteration 3

Iteration 4

Dataset

Figure 4.1: Impact of the kernel scale on the CL-OMP algorithm for three different kernel variances (left: too small, middle: optimal,
right: too large). Synthetic data, k = 4, n = 1000, d = 2. The top rows represent the cost function (line 3 of Algorithm 4.1, darker =
higher = better) used to pick the new atom for the four iterations of the algorithm (top to bottom), together with the selected atom
(in blue) and atoms from previous iterations (in green). Black arrows correspond to the movement of atoms during the “global”
optimization phases (Line 5 of Algorithm 4.1). The last row depicts the dataset in grey, with the recovered atoms superimposed in

green.

8o

As expected, the algorithm fails to recover the cluster centers when
the chosen kernel variance is too large (rightmost column). Intuitively,
and following the low-pass filtering interpretation, the whole dataset
is smoothed to a single cluster and the individual groups cannot be
recovered. However when o2 is too small, the cost function used to
pick the new atom has many spurious local minima (leftmost column),
and the solution provided by the algorithm is meaningless.

Note that the alternative CL-AMP algorithm which will be presented
in Chapter 6, despite being quite differently designed, suffers from
numerical issues as well when the kernel scale is not properly chosen.

4.1.3 Existing heuristics

As shown above, it is crucial to choose the kernel scale wisely when
performing compressive clustering in practice. Furthermore, one usu-
ally wants to estimate this scale quickly and using a small subset of the
dataset, as adopting a compressive approach looses its interest when

heavy calculations are required beforehand. Some empirical works

2

suggested to tune o

using an estimate of the intra-cluster variance [4].
In certain scenarios we also reported that the second moment of the

data, which we define as
1 — 1o
ox = e Z Ix; —pl; where p= - Z Xy (4.2)
i=1 =1

can yield lower empirical error® than the intra-cluster variance [26].

However, these heuristics have been used because they empirically
work well for some specific datasets, but no in-depth analysis can justify
these observations. As shown in Figure 4.2, they do not generalize well
to other datasets. In particular, the intra-cluster variance, which can
seem intuitive in terms of “low pass filtering” interpretation, is highly
inaccurate.

Synthetic (d=k=10,n=10*) FMA-MFCC (d=20,n~10°)

14 |0 —— CKM, m=10kd 17.5
b CKM, m=2kd 150
: —+— Second moment
or o\ Estimated o2, [4] | 125
5 N | Sq. separation €? 10.0

75
5.0
2.5

N &~ O @

10 10*
2
K

2
K

Kernel variance o Kernel variance o

In this figure (and in the following), CKM stands for “compressive
k-means”, and m denotes the sketch size. The clustering quality of
centroids C = [cy, ..., ¢;] for the dataset X = [x, ..., X,,] is measured

using the following mean squared error

N 1 n)
MSE(X,C) =~ argmin Ix; — <13, (4.3)
i=1 Jje[l,k

8 This observation was made using a non-
Gaussian frequency distribution (see Sec-
tion 4.2.6), but remains valid in our con-
text.

Figure 4.2: Clustering error versus
kernel variance for synthetic and real
data. FMA-MFCC consists in the
MEFCC features of the free music archive
dataset [211] (cf. Appendix D for repro-
ducibility). Means over 100 trials. Esti-
mated afmra is out of the figure range for
FMA (below 10?). Synthetic data gener-
ated according to the generative model
described in (4.5) just below.

which is just another notation for the clustering risk? Ry (C,X) =
E, . lkm(C, x) where 7y is the empirical distribution of X. We also
introduce the relative squared error

MSE(X, C)
MSE (Xv Ck-means) ’

RSE(X,C) £ (4.4)
where Cy_eans i Obtained by running Lloyd’s k-means algorithm™®,
so that relative errors which are close to one correspond to successful
clusterings.

4.2 EXPERIMENTING WITH SYNTHETIC DATASETS

In order to better understand how the optimal kernel variance relates
to the dataset, we propose to generate synthetic data according to a
parametric gaussian mixture model and to study the impact of each
parameter. Throughout this section, data is thus always generated
according to a mixture 7 of k normal distributions defined as

k
™ = Z aiN<cia O-izntraId)v (45)
=1
where c; oS (0,02,..1,), Oinera = SkM@ (4.6)

k
and Zai =1.
=1

The weights «; are the weights of the different clusters, and un-

less otherwise specified we choose «; = 1/k for each i € [1,k]. The

2
intra

tion and spread of the components of the mixture. The quantity s is

and &2

intra- and inter-cluster variances o e

control the separa-

used to parametrize the separation between clusters in a way which

t11

is coherent'" across dimensions [4, Section 5.1]. Depending on the
2

context, we might specify the separation parameter s or directly o7, .,

but both quantities are directly related to each other. We also define

p? = o2 /o2, the variance ratio; a large value of p thus corresponds

to well-separated clusters. Two datasets in dimension d = 2 for two

2
inter

) are depicted in Figure 4.3.

different values of p (obtained using the same o} .. and two different

2

values of s, i.e. two different values of o7,

Note that synthetic data in Figure 4.2 was already generated according
to this model.
We now look at the impact of the different parameters &, d, m, afmm

2
and o, .-

4.2.1 Impact of the sketch size

As could already be observed on the left part of Figure 4.2, increasing
the sketch size slightly increases the range of variances for which near
optimal clustering performance is obtained. We plot the error in log-
scale in Figure 4.4 to better illustrate this fact. Because there are kd
parameters to estimate here, and following previous works [2], we
choose m = Ckd for different values of C' > 1.

81

9 cf. Definition 1.2

* We use in practice k-means++ with 3
trials. Our goal is not to get the optimal
clustering with high precision (the prob-
lem is anyway NP-hard), but simply to
get a reasonable estimation which can
serve as a reference.

B & »

Figure 4.3: Examples of randomly
drawn datasets for parameters k =
5, d = 2 with separation parameter s =
1.5 (top) and s = 8 (bottom).

** More precisely, when s equals one the
volume of a sphere of radius o, fits k

spheres of radius o,,.

82

Synthetic data (d =2,k=5n= 104) Figure 4.4: Clustering error versus ker-
/Ex = - nel variance for different sketch sizes.
1006 |-)r oS B Medians over 100 trials. Synthetic data
} generated according to (4.5), aizmra =
% 1004 | s 1.0, p% = 10.0.
2 . 2
1002 |
) e
1000 L _T_______!____':-_-=,'=.......‘-_~_-:;‘ _______ S P o=
1072 107! 10° 10! 102 10? 10*

2

Kernel variance o,

The data dimensionality d is reduced for this figure compared to
Figure 4.2, which explains that the curves differ slightly for smaller
values of m. However the same observations can be made. One can
clearly see that the value of the optimal kernel scale only mildly de-
pends on m and that the range of kernel variances o2 for which near
optimal performance is achieved gets larger as the sketch size grows.
Opverall there is a tradeoff between the sketch size m and the precision
at which the variance needs to be tuned. To achieve high compression
ratios, i.e. small m/(kd) with good performance it seems important to
have an accurate estimate of the optimal kernel variance. It is however
difficult to be more explicit regarding the precision at which the kernel
variance must be estimated, as the “width” of the range of variances
for which near optimal performance is achieved itself depends on the
various parameters in a way which is not straightforward to model.
We thus focus in a first time on the location of the optimum only.

4.2.2 Scale-invariance

The problem presents intuitively some scale invariance. Indeed, if
C* = [cy, ..., ¢,] denotes some optimal centroids (in terms of MSE) for
a dataset X, then for any constant 5 > 0, 3C* = [fc,, ..., fc,,] are also
optimal centroids for the scaled dataset 5X — although the MSE will
be scaled by 2.

However, when working with the compressive approach, the kernel
scale must be adapted to the scale of the dataset. In particular, if a
given kernel variance o2 is optimal for some dataset X, we expect the
variance %02 to be optimal for 5X. Indeed, when the feature map ®
is built using the (scalar) feature function ¢, (x) = eiw'x
practice w € {wy, ...,w,,}), we have for any 5 > 0: ¢, (x) = qséw(ﬂx),

(with in

i.e. the effect of scaling the dataset by a constant 8 can be balanced by
a factor 1/ on the frequencies, and scaling the frequency variance by

1/B8% means scaling the kernel variance by 7 in the data domain.

2

2 P . . iy s
inter/ Tmira 18 interesting to this regard, as it is

The quantity p? = o

invariant to data scaling —i.e. by definition, it does not vary when
2

2
inter and o;

scaling at the same time o ntra

by the same factor. Figure 4.5
shows, for three different variance ratios p2, each being obtained with

two different combinations of (02, 02.,), how the RSE behaves as a

intra
. 2/ 2
function of oy, /0 .-

In each setting, and as expected, the same results are obtained in-

p=1 p =100
e~ S S
100
st ha
\ a
4r 3
K — CKM, 02, =1.0
& CKM, 02, =100.0 50 [
3r T \
\ \
\ 25 F
2t = \
: : : | ok : . :]
102 10t 10 100 10> 10 10t 10 100 10?
2/ 2 2/ 2
JN/Uinter UN/UintPr

o2) used to obtain the

dependently of the combination of (ra

2
Tinter
considered ratio p. More interestingly, the optimal variance seems

2

empirically to be always close to o2 ~ o2 .

considered.

for the three values of p

4.2.3 Impact of the separation between clusters

The effect of rescaling having been established, we propose to further
investigate the role of the ratio p?. Figure 4.6 shows the relative clus-
tering error as a function of both p? and o2 for two different pairs
(k,d), using the sketch size m = 4kd. The yellow areas correspond to
successful runs of the algorithm (RSE close to 1).

83

p = 10"
8000 |- \
6000 |- \
\
4000 | \
\
2000 |- \
OF } \ } |

102 10! 100 10t 10?
2/ 2
aﬁ/ginter
Figure 4.5: Clustering relative error vs.

kernel variance for multiple variance ra-
tios p. Here k = d = 10.

d=10,k =5,m = 4kd d =60,k =10,m = 4kd
107
— daﬁ(
5 | mean,|c; — c;|3 ~ 2dol,.,.
S 10 G = nfi-]ni#j"CiJ*ing ! 10! RS 10t
8 = Inter-cluster variance oﬁucr 8 1 05
= = Intra-cluster variance a?ntra =1
e &
S s
> >
g g 10°
g by
N7 N
100 10t 10°
10° 10t 102 103 10% 100 10t 102 103 10*

Variance ratio p?

We draw on top of the colormap several quantities. Since both the
dataset generation and the sketching procedure are randomized, all
the curves corresponding to random quantities are average curves. In
accordance with the heuristic mentioned in Section 4.1.3, we draw the
curve corresponding to do%., where 0% is defined in (4.2). It is impor-
tant to note here that, if ¢; # c; are cluster centers drawn according
to our model, then E[|c; —c;3] = 207 das ¢c; —c; ~ N(0,207,.,1,).
We also show the inter- and intra- cluster variances, as well as the
(expected) squared separation £* = min, ;. [c; — ¢;3.

The inter-cluster variance matches only the yellow area for d = 10,

Variance ratio p2

Figure 4.6: Impact of the cluster separa-
tion on the optimal kernel variance. The
plotted quantity (color) is the RSE (me-
dians over 100 trials). The intra-cluster

variance is here fixed to Uﬁma =1.0.

84

which should be expected as the dimension plays a role here. All
quantities %, E[|c; — c;[3] and do%, however seem to scale with p*
asymptotically similarly to the optimal kernel variance. The curves
appear to be slightly shifted compared to the yellow area, but one
should keep in mind that other parameters such as the dimension d
and the number of clusters k also play a role as discussed below. This
suggests at least for now that the optimal kernel variance scales linearly
with o2 /o2 when other quantities are fixed.

Connection with the second moment
tics, the second moment (scaled by the dimension) seems so far to
be the most promising one. Hence is is worth noting that we have

E[0%] ~ 020 + O

inter T Tintra When X is drawn according to (4.5).

4.2.4 Impact of the dimension

We now consider p to be fixed'?, and see how the dimension impacts
the optimal kernel variance in Figure 4.7.

p? =10.0,k = 10,m/(kd) = 4

From the two mentioned heuris-

2 More precisely, we also fix o2, = 1.0,
so that we avoid an implicit dependence
in d or k which would appear if we were

using the separation parameter s.

p? =1000.0,k = 10,m/(kd) = 4

10°
10* 10°
~ e 101 e 10!
s 10° 3
9] Q 4
g 10 g1
S s
z 10" z 2
9) o 10
E 100 £
g 10 3
N — o2 N — 2
101 n;eani#'j"cifcj\\g zfdaﬁﬂer 109 n;eani#.chi 7cj||§ z22da;‘;‘ter
g G =mlni¢chi—°]‘“2 = € =mmi%chi_cj"2
1072 e —— 100 ———— 109

10t 102

d

This figure shows clearly that, although the three curves superim-
posed on the plot grow asymptotically in a similar manner, only the
squared separation ¢ matches in low dimension the observations,
while both do% and the mean distance between cluster centers are
irrelevant when d < 10.

4.2.5 Impactof k

We now fix the dimension d, the sketch size and the separation between
clusters'3, and look at the impact of the number of clusters k. Results
are given in Figure 4.8 for both p? = 10 and p* = 10°.

This figure suggests like the previous one that the separation is
clearly the important quantity to estimate here. The observed cor-
relation is perfect for p? = 10 (left), while the second moment and

the mean inter-cluster distance appear to be irrelevant here. When

2

p® = 10® (right), the correspondence is not perfect but the same

10* 102

d

Figure 4.7: Impact of the dimension on
the optimal kernel variance. Medians
over multiple trials (100 for small dimen-
sions, less for higher dimensions because
of too long runtimes).

3 Here again by setting o2, to a fixed
value in order to avoid an implicit depen-

dence in k or d.

85

— 2
doy

meani%j"ci —Cj ||§ %22d0'§|te[

"€ :min#j"Ci*Csz 101

€?/(16log(ek))

104 P2 =10.0,d =10,m/(kd) =4 . p2 =1000.0,d = 10,m/(kd) = 4
—] 2
mc::z};n- .Hc._c,"ZNQd 2
i#51€i — Cjllz & 400 nte
sz 103 = e =min;yfc, — c;l3 10! sz —_—
@ — - ¢%/(161og(ek)) ° .
g g
g g
§ 102 §
: g
5 1 5
v 10 X

—_
o
o

conclusion can be drawn. The red dot-dashed curve corresponds to
o2 = ¢?/(161og(ek)), which is the sufficient upper bound used to de-
rive guarantees on the model of mixtures of e-separated Diracs [6,
Theorem 3.1]. It does not fit well our observations here, even when
adjusting the multiplicative constant. This tend to suggest that the de-
pendence in log(k) ! might be a proof artifact rather than a necessity.

Estimation of the separation We now give a rough approximation
of the expected separation. Deriving a closed form seems to be out of
reach, but we rely on asymptotic results when k — co. Naturally, the
experiments presented so far in the chapter are relevant only for data
drawn according to a Gaussian mixture model with balanced clusters,
and thus are in practice of limited utility. This approximation should
therefore not in any way be considered as a “generic” heuristic. It can
however help when data is generated according to (4.5) with known
parameters, which we will do in the following chapters. Furthermore, it
can serve as a first rough estimation when dealing with other datasets.

Let (c;);<j<o be a sequence of points drawn i.i.d. according to
(4.6). We denote p, the corresponding probability density function,
ie. p.(x) = N(x;0,00,.1;). We denote ¢, = min, ;. lc; — ¢,
the minimum distance between the k first points. When k& — oo, kQEZ
follows an exponential low. More precisely, for any ¢t > 0 we have [212]

lim P[k%e{ > t] = e, (4.7)
k—o0
where ¢ = 1V, Ip, |3 (48)
hv, ™ thevol f th ball
it = —t t it .
with V, Ti1d/2) e volume of the unit ba (4.9)
and o3 = [p2(x)dx = (207 (410)
. 27t
1.e. c = mainter' (4.11)

Hence, when £ is large enough, we can use the following approxima-

10°
10! 102

Figure 4.8: RSE as a function of both &
and ai. Here afntm = 1.0, and errors are

clipped to the interval [1, 20] for coher-
ence with other figures.

86

tions

Yt > 0 Ple;, >tV %9 ~ exp(—ct), (4.12)
Vu > 0 Ple, < uj L 1 —exp(—cu’k?).

As a consequence, we can in this asymptotic regime approximate the
density of ¢, by the density p., defined on R as

p., (u) = ck?du® " exp(—cu’k?). (4.13)
With this approximation,

Elg,] = ck2d/ u exp(—cudk?) du
o

i I(1+1/d
O pog Lt 1/d)
d(ck2)1+1/d
= ¢ M2 (1 4 1/d)
= 2"V (1 4+ d/2)Y T (1 + 1/ d)k ™ 0y (4.14)

where the last equality follows from the definition of cin (4.11). Again,
this derivation is only an approximation as it relies on the limit behavior
when k£ — oo.

Empirical simulations (cf. Figure 4.9) suggest that this heuristic is
usable as a rough approximation (relative approximation error inferior
to 0.1) as soon as k > 20. It is naturally only an expectation, and
data-dependent estimation procedures should be more relevant when
working on fixed dataset instances.

4.2.6 Impact of the frequency distribution

So far, we only considered drawing the frequency vectors according to a
normal distribution. Note that drawing w ~ A/(0, U%I 1) is equivalent to
the model w = Ro,, ' with ¢ ~U(S*) and R Nhyxd, where U(S*)
denotes the uniform distribution on the unit sphere S%* and y, the Chi
distribution with d degrees of freedom. As the mass of the Chi prob-
ability distribution drifts away from the origin when the dimension
increases, using another probability distribution producing more low
frequencies could be beneficial. Previous works suggested for instance
to use the following “adapted radius” probability density function [4,
Section 3.3.1], initially in the context of Gaussian modeling

1 1/2
Par(R) & <R2+ZR4> exp(—%R2>. (4.15)

This can be interpreted as a form of importance sampling. Our goal
here is not to look for an “optimal” frequency distribution, as this is
a complex subject on its own. We rather propose to quickly compare
empirically the results obtained with the Gaussian kernel and the
kernel induced when using random Fourier features with the radius
distribution (4.15) — which we call the adapted radius kernel in the
sequel. We do so in order to emphasize that the conclusions drawn
earlier stay meaningful in this context.

(i) Using u = (t/k*)Y4, ie. t = udk?.

(i) cf. [213, Section 3.326, eq. 2.1° p.337]

[Experimental
------ Estimation (4.14

Separation ¢,
I
(=] en] (=] =]
> = ©° @2
<) o NN
T

1 1 1 1 1 1
100.510'1.0101.510'2.0102.510'3.0
10-0-4

—_ =
9
o o
w O

1071.0 i

—

<
iR
V)

Relative error
=
o
N
=

—

<
iR
[=>)

100‘510'140101.510'2.0102‘510'340
Number of clusters k

Figure 4.9: (Top) Mean (dark blue) and
standard deviation (blue ribbon) of the
minimal separation e over 300 trials, as
well as the approximation provided by
(4.14). (Bottom) Corresponding relative
error.

Note that when using the “adapted radius” distribution exactly as
proposed in [4], i.e. with w = Ro, ¢, we have ERNPAR’LPHRU;IQO‘F =
E RNPAR[RQ] /o? which differs from what would have been obtained
with the Gaussian kernel as E|w|? = d/o? when w ~ N(0, U%Id).
Hence when using the “adapted radius” distribution, we normalize
the frequency to obtain comparable variances, i.e. we use

R p— - (416)
O.KERNPAR[R]
with still ¢ ~ ¢(S? "), and R drawn with probability density function
par- We denote this distribution of w as AR(07), and E,, g2 |wl3 =
d/o?.
We now reproduce in Figure 4.10 the same results as in Figure 4.7,
but using both Gaussian (on the left) and “adapted radius” (right)

kernels.
d =10,k = 5,m = 4kd, kernel=Gaussian d =10,k = 5, m = 4kd, kernel=AdaptedRadius

N 100 10t
] [}
Q Q
= =
(o <
E i
> >
o] o]
- £
V] / —_— do? 9]
~ f me;(ni%chi —Cj ||§ & 2d‘712nter ~

sy C :mmi#j"Ci*Cj"g
10° 10°
10° 10! 102 103 10* 10° 10! 102 103 10%

Variance ratio p2

As can be seen on the figure, using this alternative distribution for
the radius does increase (for this model at least) the range of kernel
variance in which near optimal performance is achieved, especially
on the lower side of the spectrum. This comes however at the cost
of slightly worse results for smaller values of p. We provide a two-
dimensional cut for comparison in Figure 4.11.

d =10,k = 5,m = 4kd, p*> = 100

1020 4 ,
—— AdaptedRadius kernel|_——==""""—""""
1015 | Gaussian kernel
& 100+
10045 |
10%0 s — . ! s :
10° 10* 102 103 10* 10° 10°

Kernel variance o2

To summarize, although looking for an “optimal” frequency distri-
bution is not our goal here, we assume in the following chapters that
the same considerations regarding the choice of the kernel variance

Variance ratio p2

Figure 4.10: RSE as a function of o2 and
p for two different frequency distribu-
tions. Medians over 100 trials.

Figure 4.11: RSE as a function of o2 for a
fixed p and two different types of kernels.
Medians over 100 trials.

88

can be made for Gaussian and adapted radius kernels, provided that
proper normalization is used.

4.3 TOWARDS EMPIRICAL ESTIMATION OF THE SEPA-
RATION

In light of the simulations performed in the previous section, setting the
kernel standard deviation to match the separation (i.e. o,. ~ ¢) appears
to be a reasonable choice in order to achieve good clustering results.
It is thus of practical interest to be able to estimate the separation’* ¢
of any given dataset. Furthermore, one usually wants to estimate this
scale quickly and using a small subset of the data collection, as adopting
a compressive approach looses its interest when heavy calculations are
required beforehand. A simple method would be to run the k-means
algorithm on a randomly chosen subset of the data, but this would not
scale in high dimension and might perform poorly in the presence of
unbalanced clusters.

To conclude this chapter, we thus briefly describe a proof of concept
using sketches of random Fourier features. If the separation can indeed
be estimated from a sketch, we could imagine computing a first smaller
sketch — possibly on a small subset of the data —, and then use the
estimated separation to draw new frequencies in order to compute the
main sketch. To better understand which information regarding the
separation can be inferred from such a sketch, we consider in a first
time data drawn according to a pure and balanced mixture of Diracs
e = % > 1<i<k Oc,- In the following, we denote ¢(w) the characteristic

a a1

.) 1
function of 7 at w, and define p1;; = 3(c; +¢;), d;; = 5(¢; —¢;) for
any i,j (so that e = 2min,;|/d;;||,). We start with the very simple
setting of a mixture of k& = 2 clusters, and see how our conclusions

generalize to k > 2 below.

Case k = 2. Estimating the separation in this settings is of limited
utility, not only because clustering tasks most often involve larger num-
bers of clusters, but also because the minimum distance between cluster
centers becomes the mean and maximum distance between clusters as
well. However, as an illustration it is still interesting to note that

p(w) = 1(6“"T°1 + ei“‘T°2) — ¢iw H cos(w'd;,).

i)

Hence if we define
flw) 2 1—]pw)]* =sin*(w'dy,),

and if we draw w ~ N (0,021,) with o, < 1/|d;,|, then we have with
high probability f(w) ~ |w'd;5|*>. Bounds on the data itself can be
used to bound |d,|| from above and choose an appropriate variance o2.
Multiple frequencies can be combined to improve the concentration,
i.e. one can use 20;1(219-9” f(w;)/m)Y/? as an estimator of ¢.
Interestingly, using a sketch computed from a Gaussian mixture
with centers C instead of C is not problematic as we are sampling only

*When no ground truth is known, we
define the separation as the minimum
distance between points of an optimal
solution in terms of clustering risk.

89

. . . . 2 . .
low frequencies here. Estimations of a near-optimal o, obtained with P2 =10, k=2, m/(kd) =4
this method are shown in Figure 4.12 as a function of the dimension.

(a4
Case k > 2. When the mixture involves more than two clusters, §
estimation is less straightforward. Defining f;; = %|wTdij| wehavein §
a similar manner ‘;‘
1,79 e
9u(1) 2 S07p(t)?) = 3 cos(2nf, 1 :

i<j N = True €2

proposed heuristic

Proof 4.1: Using again the similar notations p;; = %(cl +c¢;) and 100 10! 102
d; = %(cz —c;),wehavec; = p;; +d,;;and c; = p;; —d,;. Let d

p = 2k(k —1) denote the number of pairs (without order) of) _ _
2 Figure 4.12: Estimated optimal kernel

centers. Every c; appears in k — 1 pairs, thus we have variance for k = 2. Data generated ac-
" cording to (4.5), medians over 100 trials.
_1 3 eiler =
k i=1

Soaty Iy
wwC; ww C,
@ ‘@ J

1<, <k

Z i b5 cos(w w'd,))
i

4
k2
k‘4|gp < eiwTh; cos(w Tdij)> (Z e~ By COS(wquT))

q,r

i
2k

=

S exp(ie(pai; — pgy) cos(w?d,;) cos(w”d,,)

0,5,4,7

As |p(w)]? is a real quantity, we have

Ko@)l = Y Q.j.qr) with

,5,4,T
Qi,j,q,7)
£ cos(w’ (p;; — pg,)) cos(w'd;) cos(w’d,,)
= % cos(w’(d;, +d;,)) [cos(w(d,; + d,,)) + cos(w”(d;; —d,,.))]
= = |cos(w”(d;y+ dj,+ dy;+d,,) +cos(w’(d;+ dj,— dy;—d,,)
+cos(w’(d;,+ d;,+ d;;— d,,)) +cos(w” (d;,+ d . — d,;+ dqr))}
= i[cos(QwTdiT) + cos(2w’d,,) + cos(2w’d,,) + cos(2w’d,,)]

Hence we have by symmetry

E*p(w) Z k? cos(2w7d, ;)

4,J

©
=k? <k+22cos(2wTdij)> o

i<j
100 1
— FFT
2 T c
and |o(w)|* = o (k+22cos (2w’ d,;)) 75 oo True lwTd,
1<J 50

* V\l\/\/\,\/V\/\/\/\/vvvvv
This means that the (f;;);<;.;<, might be recovered, provided £ is o |] .
not too large, from the Fourier transform of g, for some w as illustrated 0 1 2 3
in Figure 4.13 (bottom). Recovering & from the (f;;)<;4j<y is straight- Figure 4.13: Dataset and mixture of clus-
X K . o J - J= ter centers (top) and corresponding fast
forward in dimension d = 1. Yet, finding a way to estimate ¢ for d > 1 Fourier transform of g, for one random

by combining estimations obtained in multiple directions w is still a direction w (bottom). k = 4 (6 pairs).

90

challenge. Sparse FFT [214] might be leveraged here to use as few
samples of the characteristic function as possible.

If all the clusters are normally distributed and have similar scales
(Figure 4.13 top), we can model the data distribution 7 as the convo-
lution of a mixture of Diracs 7 (located at the cluster centers) and

2

a Gaussian multivariate distribution m, = N (0,07,

I,;). Keriven et
2

al. have proposed [4] a way to estimate the intra-cluster variance o}, .

from a small sketch, using the fact that |¢(w)| decreases approximately
2

. 1
in exp(— 4wl

< tra)- Hence any empirical sketch § measured w.r.t. 7

can be deconvolved by dividing it pointwise by the (analytical) sketch

of ;

intra i OFder to estimate the sketch of the mixture of Diracs 7. The

impact of such a deconvolution on the noise level of the signal could re-
strict severely the usability of this approach, but it remains nonetheless
a straightforward way to extend the result to broader distributions.

4.4 PERSPECTIVES

This chapter clarifies on several aspects the role of the kernel variance
when performing compressive clustering in practice. Section 4.2.6
suggests that when the variance ratio p? is not too small, using the
“adapted radius” distribution rather than a pure Gaussian kernel helps
as it increases the range of scales for which near optimal performance
can be obtained, and thus reduces the risks of suffering from a poor
choice of the kernel scale. The other experiments conducted in Sec-
tion 4.2 allowed us to highlight that choosing o, ~ ¢ is a good heuristic,
but learning ¢ directly from the dataset remains a challenge. Some
ideas regarding the possibility to use sketches for this purpose have
been discussed in Section 4.3, but this preliminary work is by no way
close to providing a robust estimation procedure, which is left for fu-
ture work. Furthermore, it would be interesting to look at the impact of
unbalanced clusters and/or clusters with different covariance matrices
in the generation model. Alternative importance sampling strategies
should also be investigated in future work, as they can help signifi-
cantly to alleviate the negative impact of a possibly poorly estimated
kernel scale.

Chapter 5
High-Dimensional Sketching with
Structured Linear Operators

Note
lished to the ICASSP 2018 conference [24]. We provide here more
extensive experiments, and discuss how existing theoretical guar-

The work presented in this chapter has been partially pub-

antees can be adapted to this new setting.

HE SKETCHING operators considered so far, such as the one in-

duced by random Fourier features (cf. Definition 2.5), are built

as the succession of a linear and a non-linear step. Hence in
order to compute the sketch of a dataset X = [x, ..., X,,], one must first
compute the matrix product 27X, then apply pointwise the nonlinear
scalar function, which we denote p, and eventually average the result-
ing matrix across columns. The overall complexity of the sketching
operation is thus driven' by the linear step, which scales in ©(mdn).
Furthermore, the sheer cost (in space) of storing the matrix §2 is ©(md),
which can also be prohibitive. The sketch size m depends on the ap-
plication considered, but will typically be at least of the order of d,
yielding time and space complexities growing quadratically with the
data dimension.

Many well-known linear digital signal processing operations, such
as the discrete Fourier, cosine and wavelet transforms, can be performed
using fast algorithms which can be interpreted as successions of multi-
plications by sparse matrices with particular structures®. This chapter
considers using a matrix €2 for which such a sparse factorization ex-
ist, rather than relying on a dense matrix with normally distributed
ii.d. entries, thus reducing the time and space complexities in the
high-dimensional regime.

Summary of the contributions
= We review in Section 5.1 the different kinds of structured linear
operators proposed in the literature.
* We leverage these results to design in Section 5.2 a structured
transform for efficient compressive learning.
* We provide extensive simulations to study the computational gains
in Section 5.3.

Contents

5.1

5.2

53

5.4

55

Literature on structured trans-
forms 92

5.1.1 Factorization approaches | 5.1.2
Families of linear operators based on

known structured blocks
Construction 94

5.2.1 Decoupling radial and directional
distributions | 5.2.2 Construction of a
square block | 5.2.3 Extension to arbi-
trary dimensions | 5.2.4 Comparison
of the costs

Experimental validation 99

5.3.1 Runtime speedup | 5.3.2 Cluster-
ing performance | 5.3.3 Hierarchical
clustering on a co-purchasing graph
Towards theoretical guarantees 107
5.4.1 Adapting existing results | 5.4.2
Induced kernels | 5.4.3 Concentration

Perspectives 114

* This hypothesis, which seems reason-
able in a first approach, is discussed fur-
ther in Section 5.3.1 (paragraph “nonlin-
earity”).

*This includes in particular many
“divide-and-conquer” algorithms, such
as the Cooley-Tukey method for the
Fourier transform.

92

= We show in Section 5.4 that the feature map ®*" induces a proper
Gaussian kernel when computed with some of the proposed struc-
tured blocks, and discuss how existing statistical learning guaran-
tees can be adapted in this case.

5.1 LITERATURE ON STRUCTURED TRANSFORMS

We discuss in Section 5.1.1 an approach consisting in factorizing a
given dense operator into a product of sparse terms for subsequent
efficient usage, while Section 5.1.2 details how to directly draw random
structured matrices with a prescribed behavior.

5.1.1 Factorization approaches

Le Magoarou et al. introduced [215] under the name Fapst (Fast Ap-
proximate Multi-layer Sparse Transforms) a general family of linear
operators and an associated factorization algorithm. More precisely,
a matrix A is said to be Fapst if it can be written as a product (hence
“multi-layer”) of few sparse matrices, i.e. A = szl S,, where the
(S;)1<j< are individually sparse, and ideally the total number s of
nonzero coefficients in all the factors (S;), - ;- ; is much lower than the
dimension of the dense matrix A. The storage cost and the computa-
tional cost of the multiplication, which both scale in O(s), are therefore
likewise reduced.

A hierarchical factorization algorithm is introduced to get a Fapst

approximation of a given operator A by looking for

2 J

+> R(S;),

=1

J

Afl'[sj

=1

(Sj)1§ng € arg min
(Si)1<j<a

where R is a regularizer favoring sparse factors. Applications to dictio-
nary learning and acceleration of linear inverse problems are provided.
Similar decompositions have also been used to speed-up k-means al-
gorithm [216], by factorizing the matrix of cluster centers. A slightly
different factorization approach based on Givens rotation has been
developed [217] and applied to principal components analysis.

Owing to the nature (random with i.i.d. entries) of the linear opera-
tors used so far for compressive learning, generating a dense matrix
and then approximating it by a product of structured factors would
not necessarily yield good approximations, and be mostly inefficient in
terms of memory as the dense matrix would still have to be generated
and temporarily stored. We thus take a closer look at approaches which
directly produce structured matrices.

5.1.2 Families of linear operators based on known struc-
tured blocks

In contrast to the previous works focusing on the approximation of
one given dense matrix, multiple authors have introduced families of
random linear operators with a prescribed structure, from which one

can directly sample from. This approach is well suited to our setting,
where the operator Q2 is anyway randomly generated.

In order to produce operators that can be efficiently evaluated, the
number 7 of random quantities — or degrees of freedom — in these
models is kept small, typically linear with the dimension. That is, a
structured d x d matrix will be built from at most » = O(d) random
entries. Examples of known square matrices parametrized by a linear
number of parameters include Toeplitz (i.e. with constant diagonals),
circulant (special case of Toeplitz), Hankel (i.e. having constant skew-
diagonals) and Vandermonde matrices. In most applications however,
these constructions are not useful per se; a structured family is thus
usually designed to combine a small number of random independent
quantities together with other structured deterministic operators, yield-
ing in the end matrices that are not only structured, but that also display
desirable properties with respect to the application at hand.

The fast Johnson-Lindenstrauss transform was introduced [130]
as an efficient way to perform geometry-preserving dimensionality
reduction (cf. Chapter 3). It takes the form A = PHD, where P is a
random sparse matrix drawn according to a specific distribution, H
is a Walsh-Hadamard matrix, and D is a diagonal matrix with i.i.d.
Rademacher3 entries on the diagonal. Walsh-Hadamard matrices play
a key role in many families presented here. They have mutually or-
thogonal rows and columns, allow to perform matrix-vector products
in quasilinear time, and can be obtained recursively by the following
definition:

Hy Hy

H,=11] and H,, =
V= (1] and Hy, [Hd 0

] =H,®,H, (5.1)

where ®,, denotes the Kronecker product. Examples are provided in
Figure 5.1.

Although this construction yields only square matrices whose sizes
are powers of 2, padding can be performed to cover all usecases. We
discuss this matter in Section 5.2.3, but consider for now only square
matrices for conciseness.

Many fast transforms families have been introduced in order to
speed-up the computation of random features of the form

x = p(Ax) (5.2)

for kernel approximation, where p is again a nonlinearity applied point-
wise. We recall that a Gaussian kernel can be approximated by an inner
product between features of the form (5.2) with A having i.i.d. nor-
mally distributed entries and p = exp(t-) — we refer the reader to
Section 2.3.2.

Le et al. introduced the Fastfood family [77] of matrices for Gaus-
sian kernel approximation. A fastfood matrix can be factorized as
Ay = SHD,ITHD ;;, where Dy, G; are diagonal with respectively
Rademacher and Gaussian i.i.d. entries, S a diagonal random scaling
matrix and IT {0, 1}%*? is a random permutation. The induced kernel

93

3i.e. uniformin {—1,+1}.

Figure 5.1: Naturally ordered Walsh-
Hadamard matrices for d = 2% (left)
and d = 25 (right). Black and blue en-
tries represent respectively the values —1
and 1.

94

1 %
kg(x,y) = p— exp(LAgx)" exp(tAgy) (5-3)

is shown to be an unbiased estimator of the Gaussian kernel and point-
wise concentration results are provided.

Choromanski and Sindhwani generalized this work with their generic
P-model [218], whose design makes a clear separation between ran-
domness and structure, and for which approximation guarantees are
provided for the Gaussian and some arc-cosine kernels. Different met-
rics are introduced to quantify the structure of a given P-model and
its ability to “recycle” the random quantities, i.e. metrics measuring
the level of dependence between the rows of the produced matrix.

Yu et al. observed empirically [219] that kernel estimators based on
orthogonal operators* display lower approximation error, and further
introduce the following construction, which is both structured and
orthogonal:

A = ¢cHD,HD,HD, (5.4)

where D, D,, D5 are again diagonal with Rademacher i.i.d. entries
and cis a constant. One can recognize here the association of three inde-
pendent HD blocks. This association of a Hadamard matrix with a di-
agonal Rademacher matrix was already used by Ailon and Chazelle for
fast Johnson-Lindenstrauss, and appears in the fastfood construction as
well. Similar designs have been used by Bojarski et al., with guarantees
oriented towards locality-sensitive hashing applications [220].

Further works provided theoretical evidence regarding the role of
orthogonality and the importance of choosing an odd number of HD
blocksin (5.4) [221]. Choromanski et al. later provided a more detailed
analysis of regimes in which orthogonality yields better approximation
performance for radial-basis function kernels [78], i.e. kernels of the
form k(x,y) = ¢(|x —y|) for some function ¢.

Multiple works have also considered replacing the random quanti-
ties in these models by tunable parameters, yielding low-complexity
families of linear operators that are especially useful for deep learn-
ing pipelines. Indeed, replacing the dense matrices typically used in
fully-connected layers by such structured models allows to speed-up
the runtimes while reducing the total number of parameters to learn
in the model, and still providing good approximation capacities [222,

223,224].

5.2 CONSTRUCTION

We recall that our goal is to design a structured operator which can
be used to replace the matrix of frequencies 2 of size d x m used in
the feature map ®(x) = p(2’x), in order to compute sketches of size
m as defined in (1.10). We address scaling concerns in Section 5.2.1,
explain how to build one square structured block in Section 5.2.2 under
specific hypotheses, and then detail how to extend this construction to
arbitrary dimensions in Section 5.2.3.

* We consider here computing features of
the kind (5.2) where A has orthogonal
rows.

5.2.1 Decoupling radial and directional distributions

As detailed in sections 2.3.2 and 4.2.6, a Gaussian kernel with spatial
variance o2 can be approximated using random Fourier features, using
dense frequency® vectors drawn according to N (0, éId). One way to
generate such vectors is to use the generative model w = (R'/o,,)¢,
where R’ is a radius drawn as R’ ~ x,, and ¢ is a directional vector
drawn uniformly (and independently from R) on the unit sphere S
This means that the probability distribution N (0, U%Id) is also isotropic:
its probability density function can be written p(w) = pr(|w|)-

In the following, we solely work with frequency distributions which
have this separability property®, i.e. for which the radial component
can be drawn independently from the direction. However we will not
restrict ourselves to isotropic distributions anymore.

From the perspective of the design of the matrix €2, the separability
assumption implies that we can write 2 = MS, where M is a matrix
with /,-normalized columns, and S is a diagonal matrix of radiuses
with i.i.d. entries” drawn according to the desired radial distribution p .
From a computational perspective, S is a diagonal matrix and thus
does not impact the overall complexity of a matrix-vector product 27X,
which is dominated by the multiplications by M”.

In the following sections, we thus propose to keep this matrix S
untouched and to modify only M. More precisely, we will replace
the “dense” generation scheme, where the columns of M are drawn
independently from each other, by a structured scheme where M is
built from i.i.d. square blocks M, ..., M,. We can thus rewrite

Q = [Bl’ "'7Bb] == [Mlsl’ .,Mbsb]

where for each i € [1,b], S; corresponds to a square diagonal block®
of the scaling matrix S, and M, is generated in a way such that it has
ly-normalized columns.

5.2.2 Construction of a square block

We consider here building a square matrix B, in the setting where
d = 27 for some integer ¢. Note that this setting is similar to choosing a
sketch size m = d, in which case one could simply use 27 = B.

We use the construction

B = MpSg (55)

where Sg is a diagonal scaling matrix with i.i.d. entries drawn accord-
ing to the desired radial distribution py (see Section 5.2.1), and My is
a structured random block with /,-normalized columns.

We will mainly focus on the setting Mg = Mps, where M s is a
“triple-Rademacher” which we now define. Here and in the follow-
ing, we work directly with the transpose of the square block M for
convenience — we recall that that the features are computed from the
product 27X, and hence we are interested in the action of M, rather
than Mp.

95

5 In light of Chapter 2, and in particular
given that the sketch is a collection of ran-
dom samples of the characteristic func-
tion, we refer to the columns of €2 in the
following as frequency vectors.

¢ If both radial and directional probability
distributions admit probability density
functions pp and p,, and if p,, denotes
the density of w = R¢p, then we have the
decomposition p,,(w) = pr(R)p, ().

7 The entries of S are mutually indepen-
dent, but also independent with respect
to M.

8 Which implies that each S, is a diagonal
matrix as well.

96

Definition 5.1: The triple-Rademacher (abbreviated “R>”) struc-
tured block is defined as
1

T _
Mps = 3/2

HD,HD,HD,, (5.6)

where D, D,, D are diagonal matrices with i.i.d. Rademacher
entries.

Here and in the following, H always denotes the Walsh-Hadamard
matrix introduced in (5.1). Note that the normalization factor d~*/2
is chosen such that Mgg is an orthonormal matrix9. A representation
of the construction (5.5) when Mg = M for m = d = 2* is given in

 As will be made clear in Lemma 5.4.

Figure 5.2.
||
. "
BT — FETE]]

"u
"u "u
diagonal with x- diagonal with

distributed entries +1 entries

The construction of M ;5 is based on the designs of Yu etal. [219] and
Bojarski et al. [220] presented in Section 5.1.2, which themselves rely on
the HD block initially introduced for dimensionality reduction. In the
latter case, this block can be interpreted as a preprocessing step whose
goal is to smooth the energy distribution of input data vectors [130].

Alternative constructions Although we will mostly use the construc-
tion presented above, we define here two other types of square blocks
which can be used as alternatives for M;S in (5.5) (the scaling ma-
trix Sy staying the same).

Definition 5.2: The Gaussian - double Rademacher (abbreviated
“GR?”) block is defined as

1
ML = — HD,HD,HD)

where D, is diagonal with i.i.d. standard Gaussian entries, and
D,, D, are diagonal with i.i.d. Rademacher entries.

Definition 5.3 (Fastfood): The fastfood block (introduced in Sec-
tion 5.1.2 and abbreviated “ff”) is defined as

1
ML= —— HD_.IIHD,. (5.8)
ff G R
Vd|Dg|

where D, is diagonal with i.i.d. Gaussian entries, D ; diagonal
with i.i.d. Rademacher entries, and II is a random permutation.

Both Mgs and M blocks have I,-normalized rows, as will be proved

Hadamard
(deterministic)

Figure 5.2: Design of a structured square
matrix of frequencies. Walsh-Hadamard
are made of +1 entries, and white parts
are zeros. The constant factors are im-
plicitly merged into the scaling matrix
here.

in Lemma 5.4. They are however not orthogonal. The M7, construc-
tion is preferred from a practical perspective as it can be stored more
efficiently (see Section 5.2.4), but we will see that only Mg p2 and Mg
induce in expectation a Gaussian kernel. We discuss these aspects in
Section 5.4.

5.2.3 Extension to arbitrary dimensions

We assumed previously that d was a power of 2, and explained how
to build one square block in this case. However when performing
compressive learning, empirical observations and theoretical results (cf.
Section 2.5) suggest that the targeted sketch size m should be chosen to
be of the order of the number p of parameters to learn. For instance with
compressive k-means, recovering k d-dimensional centroids requires a
sketch size m = kd. Hence our construction needs to be extended to
arbitrary d x m matrices with m > d, including the contexts where the
dimension d is not a power of 2.

We denote ¢ = [log,(d)], d, = 2%, r = [m/d,] and m, = rd,
(where the letter “p” stands for “padding”). We use for sketching a
d, x m,, matrix {2, whose transpose {2 is built by horizontally stacking
square blocks of size 27 x 29 that are drawn independently according
to (5.5) as depicted in Figure 5.3. When d,, > d, the distribution of
the scaling matrix Sy in (5.5) must be adapted for homogeneity: for
instance in order to approximate a Gaussian kernel, the radiuses will
be drawn according to a x,; probability distribution (instead of x,
used otherwise).

97

Dense matrix Q= d
Structured matrix
withd =29, m/de N Q= B, B, B, B, d,=21=d
(ideal scenario)
Structured matrix
= B B B B d, =27>4d
with padding @ ! 2 3 b P
m, >m

When sketching, we use zero-padding on the data X to get a matrix
X,qq of matching dimensions, and keep only the m first rows when
computing the product 27X, ;.

We now take closer look at the benefits of such a construction in
comparison with a dense matrix. We recall that the matrix 2 appears
in the definition of the feature function ® : x - p(Q7x), which in turns

Figure 5.3: Construction of the whole
matrix of frequencies, with the dense
approach (top), with structured blocks
when d is a power of 2 (middle), and
with structured blocks and padding (bot-
tom). The hatched area represents the
“unused” part of the construction when
using padding.

98

defines the sketching operator 4. This operator is used to compute
the sketch, but also to address the optimization problem used to learn
from the sketch (2.12).

5.2.4 Comparison of the costs

We motivated our interest for fast transforms by the benefits it would
bring in terms of both the computational complexity of the matrix
product, and the storage cost. As mentioned in the introduction, both
matrix-vector complexity and the storage cost scale in ©(md) for a
dense operator.

With the proposed construction, the matrix-vector product for a
square block of size d, takes O(dlog(d)) thanks to the fast Walsh-
Hadamard transform. Multiplication by the whole matrix Q7 thus
boils down to ©([m/d, |d,log(d,)) = ©(mlog(d)) operations. From a
storage perspective, the Walsh-Hadamard matrix being a deterministic
operation, only the random diagonal entries need to be stored for a
total memory cost of ©([m/d,|d,) = ©(m).

Learning from the sketch can take different forms depending on the
learning task considered, but always requires evaluating the sketching
operator. The usage of fast transform is thus likely to decrease the
learning cost as well. Although the overall complexity depends on
the considered application, we give complexities for the compressive
k-means task in Table 5.1 just below, both for CL-OMPR, an alternative
divide-to-conquer variant [2] referred as “Hierarchical”, and the CL-
AMP algorithm which will be introduced in Chapter 6.

CKM FCKM KM
Time kd?(n+k?®) kdIn(d)(n+kiIn(k)) ndkI
Sketching nkd? nkdIn(d) —
Learning
CL-OMP(R) k3d? k*dIn(d) —
CL-AMP k2d*1 k*dIn(d)I —
Hierarchical k? In(k)d? k* In(k)dIn(d) —
Space kd(d +ny,) kdn,, nd
Sketch kd kd —
Q kd? kd -
Q7X (by batch) kdn, kdn,, —

Note that for the compressive Gaussian mixture modeling task,
which is performed with the same features, the sketching time and
space costs are exactly the same as the one given in Table 5.1. How-
ever, the function to optimize during the learning phase involves the
element-wise squared §2, for which no simple form exists for the given
construction. Depending on the available resources, it might be more
efficient when possible to still use a fast transform and cache this matrix
at the same time, which increases the storage cost but makes it possible
to still benefit from the speedup on linear operations.

Table 5.1: Time and space (storage) com-
plexities for k-means (KM), compressive
k-means with a dense matrix (CKM) and
fast compressive k-means (FCKM), i.e.
CKM with fast transforms, for m ~ kd.
Here n;, denotes the batch size used for
sketching, k the number of clusters, I
the number of iterations (for k-means
and CL-AMP). All complexities should
be read as O(-). The space complexity for
QTX refers to the cost of storing the in-
termediate quantities 27X, where X,
is a batch of n;, columns of X.

Similar speed-ups and memory gains could be achieved for other
compressive learning tasks, such as compressive PCA, but are not
reported here for conciseness.

5.3 EXPERIMENTAL VALIDATION

We now provide some empirical insights on the effectiveness of the
proposed structured transform, focusing mainly on the compressive k-
means learning task. We report runtime speedups in Section 5.3.1, and
clustering performance for both synthetic and real data in sections 5.3.2
and 5.3.3. Unless otherwise specified, experiments involving structured
matrices use M s blocks. We will see later in the thesis in Section 9.3.2
a usecase of fast transforms for PCA in dimension d = 32768, where
dense features can simply not be used. In this section, we however focus
on smaller dimensions, where both methods can be run for comparison.

The proposed transform was implemented in Julia (cf. Appendix D),
using the fast Hadamard transform (FFHT) library [225] as a core com-
ponent. Other implementations of the fast Walsh-Hadamard transform
exist, see e.g. McKernel [226] or the older Spiral project'®. The FFHT
library seemed to be the most efficient as it relies on SSE4 and AVX
primitives'', and comes under the MIT license.

5.3.1 Runtime speedup

We measure the runtimes on the compressive k-means task, with and
without fast transforms. Details regarding data generation are dis-
cussed below as they do not impact the runtimes too much.

Note that, although the sketching process can be very easily paral-
lelized, adopting a consistent parallelization scheme which would be
efficient in all possible scenarios is not straightforward at all and would
require more engineering. After a few trials, we thus decided to stay
with a single-thread execution, and measure all the runtimes using a
single core. For a fair comparison with the dense matrix product, we
thus set the BLAS' number of threads to 1. We compiled the FFHT
library with both AVX enabled and disabled, using SSE4 instructions
in the latter case. The matrix-vector and matrix-matrix products which
are used when relying on a dense linear operator are the BLAS'3 ones
and most certainly rely on vectorization as well, although we do not
mention it in the legends for conciseness.

Sketching times Results are presented in Figure 5.6 for different
sketching batch sizes n;, (i.e., data is sketched by blocks of n;, sam-
ples at once) and discussed just below.

As we do not expect any computational gain for small dimensions,
we consider values of d in the range [32, 4096]. The difference between
runtimes obtained with structured transforms compared to using dense
matrices are significant for high-dimensional data, and especially when
sketching the dataset sample by sample (i.e. n, = 1). In the follow-
ing, we refer to this sketching scenario as the “streaming” case. Note

99

10

see https://www.spiral.net/
software/wht.html

"' These are instruction sets to perform
vectorized operations.

** The Basic Linear Algebra Subprograms
are routines for linear algebra operations.

3 Openblas in our case.

https://www.spiral.net/software/wht.html
https://www.spiral.net/software/wht.html

100

Batch size n;, = 10000 Batch size n, = 100

Batch size n, =1

102,0 e /
o) s —@— denseiid. Q
.g 107" H--@- structured Q, AVX |.#
éo 1010 - #-- structured 2, SSE4
5 1000
Q
0.0 J
% 10
103.5
QE_) 10340_ 1 103A0.
3 102.5 @ 102.5 |
TVS 10240_ 102.0.
i) 1.5
2 1015 10"
10140 i 101.0 J
w0 e 1000 . . | | . . | |
26 98 910 912 96 98 210 912 96 98 210 912

Dimension d Dimension d

however that doing so is useful not only for streaming data but also
when memory is limited, as the sketching memory cost scales at least
in Q(mn,)"4. For larger batch sizes, using fast transforms might not be
useful for small dimensions (the BLAS matrix-matrix product used to
compute Q7B for every batch B being too optimized to compete with
it), but still allows us to deal with high-dimensional datasets.

We now give in Figure 5.5 the results in terms of speedups, that is
as ratios of runtimes without and with fast transforms, and for two
different architectures.

Batch size n; = 10000 Batch size n;, = 100

1015
% —@— Xeon(R) E5-2450, AVX
9 1010 H O - Xeon(R) E5-2450, SSE4
g, -4 Xeon(R) E5640,SSE4
=z 1005 | =@ 1776000 AVX
_‘é’ no speed-up
O 1000
=
0.6
"§ 10
0.4
2 10
%’3 1002
:5 1000
3]
% 10792 D ' ' ' ' ' ' ' ' ' ' '
95 96 o7 98 99 9l0 gll 25 96 o7 98 99 910 oll

Dimension d Dimension d

In the streaming scenario and for the considered architecture, we
get speedups of one order of magnitude as soon as d = 512. Note that
the AVX instruction set brings only a very relative improvement over
SSE4 on the considered architectures.

Learning time The learning phase benefits similarly from using fast
transforms as shown in Figure 5.6. Results are obtained with the CL-

Dimension d

Figure 5.4: Sketching and total (sketch-
ing + learning) runtimes for multiple
sketching batch sizes using dense or
structured frequency matrices. Synthetic
data, k = 10,n = 10% Median times
over 100 iterations, obtained on an In-
tel(R) Xeon(R) CPU E5-2450 @ 2.10GHz.

4 This is the cost of just storing 7B,
where B is a batch of data.

Batch size n, =1
101.5

10140 J
10()‘5

100.0 J

10145
10140_

100.5

1000 J

27 28 29
Dimension d

2 o6
Figure 5.5: Sketching and global (sketch-
ing + learning) speedups (ratios of me-
dian runtimes over 100 trials) for multi-
ple batch sizes on different architectures.
Synthetic data, k = 10, n = 10

OMPR algorithm. Note that the learning time does not depend on the
batch size.

The fact that speedups are always greater than one, even in small
dimensions, is explained by the iterative structure of the CL-OMPR al-
gorithm. We recall that atoms are added one by one (cf. Algorithm 2.1),
and if C denotes the matrix whose columns are the selected atoms at
the i-th iteration (thus having ¢ columns), the algorithm only performs
products of the kind 27C, for which no specific gains should be ex-
pected when using the matrix-matrix BLAS multiplication because of
the small size of C — similarly to the online sketching scenario.

101A5 o
—@— Xeon(R) E5-2450, AVX

% O - Xeon(R) E5-2450, SSE4
Fg 1010 * Xeon(R) E5640, SSE4
g, —@- iy-7600U, AVX
:.0 -------- no speed-up
(=
E 100.5
~
< €
]
—

10040 e/ A A PP P

1 1

95 96 o7 o8 99 210 o1l
Dimension d

Different behavior might be observed for large values of &, but study-
ing this matter would not be very relevant as CL-OMPR scales in O(k?).
We refer the reader to Chapter 6 for the alternative CL-AMP algorithm
scaling with the number of clusters & in ©(k?).

Nonlinearity In order to fully understand the benefit of reducing the
runtime of the linear operation, one must also take in consideration
the runtime induced by the nonlinear step. The computational com-
plexity of applying the nonlinear operations to the whole n samples is
linear in d, while we recall that applying the linear operation scales in
O(dlog(d)) with fast transforms or ©(d?) without. We measured the
runtimes of both — linear and non-linear — steps and report them in
Figure 5.7. We recall that random Fourier features (RFF) rely on the
nonlinear function cis(z) = exp(iz). For reference, we also consider
using quantized Fourier features (qRFF in the legends) as proposed
in [104].

We use the standard cis function from the Julia math library, and
our own implementation of its quantized version using four floor
operations. Note that both functions could here again certainly be opti-
mized. As can be seen on the left sub-figure, for small dimensions the
runtime induced by the linear operation with a dense matrix is not only
smaller that the one obtained with a structured operator (as discussed
above, this is expected in low dimension), but also much smaller that
the time spent on the nonlinear computations. With fast transforms,
the linear and non-linear operations roughly take the same time for all
dimensions. We show on the right subfigure the proportion of time
spent on computing the nonlinearity, which confirms this. We get for

101

Figure 5.6: Learning speedups (ratios of
median runtimes over 100 trials) using
structured over dense linear operators.
Same experimental setup as in Figure 5.5.

102

[}
o
5 —@— linear operation (dense i.i.d. £2) — \\\\\ =-@— RFF (denseiid. £2)
-§ 10 -4~ linear operation (structured £2) g 08 * \‘~\\‘ —— RFF (structured)
S o8}t
& -+-#-+ nonlinear operation (RFF) "é' \\\ * qRFF (denseii.d.)
S 10 H - nonlinear operation (qRFF) e % \\ O— qRFF (structured)
< LB o = -— N
% - 4 2.‘ 0.6 I i \.\
= a2
g 0y v i)
t ---- é | * .\
< = 04 N
g 101t . 2 |e oo g o o o
= . E *, \\
ua ?:) on b \\
o o 5 o
g 108 z N
s g e
& A ! — ! 0.0 b1 ! —— T
22.5 250 27.5 21040 225 25.0 27.5 210.0

Dimension d

higher dimensions proportions of the order 35% and 55% with/without
quantization. Optimizing — or changing, if possible — the nonlinear
function therefore seems to be essential for further improvements.

5.3.2 Clustering performance

We now take a closer look at the clustering quality obtained when using
fast transforms. We consider both synthetic and real data, and error is
measured with the mean squared error (MSE) introduced in Chapter 4,
i.e. the clustering risk. From now on, we denote “CKM” the standard
compressive k-means approach with dense matrices, and “FCKM”
stands for fast compressive k-means, i.e. compressive k-means using
fast transforms (M ps unless otherwise specified). In both case, the
reconstruction is performed using the CL-OMPR algorithm. K-means
results are all obtained using the Julia “Clustering” package'>. The
k-means++ initialization strategy is always used, although we omit
the “4++4” in the legends.

k=6,d=28

FCKM, m/(kd) = 2.0 | 101

B - FCKM, m/(kd) = 6.0
1040+ —&— CKM, m/(kd) = 2.0
9 -~ CKM, m/(kd) = 6.0 1010+

10048

Chosen kernel scale

E

Dimension d

Figure 5.7: Runtimes (left) and relative
runtimes (right) of linear and non-linear
operations used for sketching as a func-
tion of the dimension d, using a sketch
size m = 10d and n = 10%. The relative
runtimes (right) are ratios of nonlinear-
ity and total runtime (e.g. 0.6 means that
60% of the total runtime was spent on
computing the nonlinearity).

5 code available at https://github.
com/JuliaStats/Clustering. jl

k=30, d=128

FCKM, m/(kd) = 2.0

B - FCKM, m/(kd) = 6.0
—#&— CKM, m/(kd) = 2.0
-9~ CKM,m/(kd)=6.0

Chosen-kernel scale

N
&2 1006
o “‘ 100.5 n
10™
*
0.2
10 1090 4
100-0 ' ! ! !
1010 1015 1020 1025 1020 1025 1030 1035 104-0
o2 o2

Synthetic data We first provide experiments on synthetic data, gen-
erated according to (4.5). We consider two different settings — namely,
(k=6,d =8)and (k = 30,d = 128). Errors are reported in Figure 5.8

K

Figure 5.8: Clustering MSE using dense
(CKM) and structured (FCKM) matrix
Q. Synthetic data with p?> = 10, n =
10%. Medians over 300 trials.

https://github.com/JuliaStats/Clustering.jl
https://github.com/JuliaStats/Clustering.jl

as functions of the kernel scale. We observe that the mean squared
errors obtained with structured transforms follow very closely the ones
obtained with dense matrices across the range of considered kernel
scales on these datasets.

We now choose a single kernel scale in the range where optimal
results are obtained (grey dashed lines in Figure 5.8) and give a violin
plot*® of the MSE corresponding to this scale only in Figure 5.9.

103

' Such plots provide a kernel density es-
timation of the probability density func-
tion of the data.

k=6, d=8
10.0 .
1 Clipped

9.5
Mk 9.0F
n
>

8.5

m/kd =2.0 m/kd = 6.0
k=30,d=128

1ol 1 Clipped 1 Clipped

160 |
B4l N/ A
2 50

140 /1 CKM

1 FCKM
[k-means, 1 replicate
130} / R [k-means, 5 replicates
- - [k-means, 50 replicates 1
m/kd =2.0 m/kd = 6.0

For k-means, “x replicates” in the legend means that the algorithm
is run x times and the best solution in terms of MSE is kept'7. For
the setting k = 6,d = 8, the MSE obtained with CKM and FCKM
follow very similar distributions, and no significant difference can be
observed. On the bottom figure (k = 30, d = 128), a few more outlier
appear when using FCKM compared to CKM with m = 2kd as can be
seen by looking at the means (last deciles are outside of the plotted
range), but the difference is again shallow and the median values are
the same for both methods. More importantly, both methods produce
very well concentrated results for m = 6kd, whereas k-means is less
stable and suffers from local optima, even using 50 replicates.

MNIST features We now propose to cluster the MNIST dataset [227]
of handwritten digits, which has k£ = 10 classes (one for each digit).

Figure 5.9: Violin plot with means (dot-
ted black lines), medians (long solid
black lines) and first/last deciles (short
solid black lines) of clustering MSE us-
ing CKM, FCKM, and k-means++ with 1
and 5 replicates. Same experimental set-
ting as in Figure 5.8, using the optimal
kernel variance. 300 trials per group.

7 Which is computationally expensive,
and only possible if one can access the
data multiple times.

104

The original dataset contains n = 70000 pictures. Distorted variants
of these images have been generated using infiMNIST [228], so that
two other datasets of sizes n = 3.10° and n = 1.10° have been used for
evaluation as well; these results are omitted here as the conclusions
were similar.

As clustering in the image domain would be pointless, we used spec-
tral features [229] computed as follows. Dense SIFT descriptors [230]
are extracted for each image, and concatenated to form a single descrip-
tor. The weighted k-nearest neighbours adjacency matrix is computed
using FLANN™®, The k eigenvectors associated to the k smallest positive
eigenvalues of the Laplacian matrix'? are used as features. Note that
computing this matrix is very expensive for large collections®’: we use
this approach here as we focus on the clustering performance of fast
transforms, and because the collection is still of a moderate size, but
this framework would not be suitable for large-scale applications. We
get n vectors of features in dimension d = k = 10, that can be clustered
using a standard k-means algorithm. Note that with this small dimen-
sion, one should not expect to get a speed-up on the execution time
using structured matrices, and we perform this experiment solely for
an analysis of clustering results. Results are presented in Figure 5.10.

B see https://github.com/

mariusmuja/flann

¥ The Laplacian matrix of a graph is a
standard tool for graph signal processing.
We refer the interested reader to [231] for
a precise definition.

2 And more expensive that the compres-
sive clustering step.

/™ CKM
[FCKM

} 0.20 [
! ©— FCKM, m/(kd) = 4.0
Lo B ! O - FCKM, m/(kd) = 8.0 018
10771 : —#%— CKM, m/(kd) =4.0 o6 L
1008 | ! -~ CKM, m/(kd).= 8.0 '
% : ===~ Chosen kernel scale g 0.14 |
0.6 | _
~ 10 i F S
[
1004 | -
0.2 : it
10%“ | ! ¢
1
100‘0'— } 1 } 1 } 1
1010 19-05 1000 1005 1010 1015
0_2

We observe almost identical results using dense and structured
operators. On the violin plot of the right figure, on can see that mean
and median MSEs are slightly lower using a dense transform, but
the difference is minor. On the other hand, on the left figure fast
transforms seem to yield acceptable results over a range of kernel
scales that is very slightly larger than when using dense matrices; here
again, the difference is quite small and both method achieve overall
similar clustering quality.

FMA dataset We also report clustering performance and runtimes
on the FMA dataset®! of audio features in Figure 5.11.

The data is centered and normalized as it contains features of very
different natures. As in previous experiments, almost no difference
can be seen in terms of clustering error between CKM and FCKM.
Runtimes are measured using a single core for a fair comparison as
explained in Section 5.3.1. The gain obtained when using structured
features is almost of one order of magnitude for the learning phase,

m/kd=4.0

Figure 5.10: Clustering MSE using CKM
and FCKM, as a function of the kernel
variance (left) and as a violin plot for a
fixed scale (right). The chosen kernel
variance for the violin plot is the one cor-
responding to the dashed grey line on the
left figure. Spectral features of dimen-
sion d = 10 computed on the MNIST
dataset, k = 10,n = 7 x 10%.

**See https://github.com/mdeff/
fma.

https://github.com/mariusmuja/flann
https://github.com/mariusmuja/flann
https://github.com/mdeff/fma
https://github.com/mdeff/fma

105

1034
= | CKM 1 CKM
| FCKM C— FCKM
| —=-- k-means 10000 |~
1032 | |
N 10301+ | g
| .= 5000 [
: A
1028 | |
2500 [~ -
""" e | I—I—
2.6 1
10" Famm e po=——=- Fe———x —————— T————— 1= of |
102-00 102-25 102-50 10275 103-00 Learning Sketching

K

and more moderate on the sketching phase where large batches are
used (as observed on synthetic data in Section 5.3.1).

Comparison of the different structures We report in Figure 5.12 the
clustering results obtained with the different types of squared blocks
mentioned in Section 5.2.2. It appears that the three considered con-
structions yield highly similar results. The block MIT23 seems to be
perform slightly worse for small values of o2 in comparison to the two
other in small dimension, but the difference is very subtle.

On the violin plots (right side of the figure), the M., block seems
on the contrary to yield slightly better results compared to the other
structured blocks, and also in comparison with the dense design (if
we look at means and medians at least, as the dense design seems
to reduce the number of outliers in comparison with structured de-
signs). However, the difference is here again too small to be significant,
and overall the three structured designs can be considered to perform
equally well on this dataset.

5.3.3 Hierarchical clustering on a co-purchasing graph

We propose to test our method on a graph spectral clustering task. This
consists in leveraging the structure of the graph to produce numerical
features for all the nodes, which can then be clustered. Here again,
we use FCKM solely to assess the clustering performance and stability,
but the features themselves are chosen of moderate size, so that no
particular speedup should be expected with FCKM.

Computing spectral features involves computing the eigendecompo-
sition of the Laplacian matrix of the graph, which is usually expensive.
Tremblay et al. proposed to bypass this step using as features ©(log k)
filtered random graph signals on the graph associated to the Laplacian
matrix [231]. Standard k-means is then applied on a random subset
(for efficiency) of these features, and interpolated to the whole col-
lection. We propose to combine these fast random features with the
FCKM framework, which allows to avoid the subsampling step.

We work on the Amazon co-purchasing network [232], which is
a graph comprising n = 334863 nodes and £ = 925872 edges. As
there is no ground truth for this dataset, we used k¥ = 64,128 and

Figure 5.11: Clustering performance
(left, medians over 10 trials) and run-
times (right, 10 trials) on the (centered
and standardized) FMA dataset. d =
518, k =20, m = 10kd.

106

k=6,d=8

1022 | —e— HD,HD,HD,

B— HD_HD,HD,
10204+ , | —*— Fastfood
| dense i.i.d.

1018 | : ————— Chosen kernel scale -
T I B | &
»n 10 | >

1014 | |

I
1012 b I
I
100+ ! "
< 000 i I
1010 1015 1020 1025
or
k=30, d=128
1040}

—e— HD,HD,HD,
B— HD_HD,HD,
—#&— Fastfood
dense i.i.d.
————— Chosen kernel scale

103,5 =

MSE

103,0__

MSE

102.5 =

256. We compare the original spectral clustering (SC), compressive
spectral clustering (CSC) [231], and 4 methods using sketching on
the same random features: we combine the two types of matrices
(dense/structured) with the two learning procedures — CL-OMPR,
given in Algorithm 2.1, and the hierarchical approach that we do not
detail here [4, Algorithm 2]. Results are provided in Figure 5.13, with
a summary of the different methods in the table below. We measure
the clustering quality with the modularity metric [233], which lever-
ages the structure of the graph to assess the quality of the produced
cluster (the higher the better, the maximum possible value is 1 and the
expectation of the modularity of a random clustering is 0).

Standard k-means is launched with 2 replicates. Using compressive
spectral clustering, the k-means step is performed only on a subset of
the features and is therefore much faster; we used 20 replicates for a
fair comparison. We used m = 10kd for the sketch size when using
CKM. All initializations were performed uniformly. As regards the
elapsed times, CL-OMPR is not competitive for large values of £** but
satisfying results are obtained with the hierarchical algorithm. Similar
modularities are obtained with and without structured matrices; the
results are slightly lower when using the hierarchical algorithm, but in
both cases they are highly concentrated, whereas standard CSC yields
a high variance. This likely results from the subsampling step, which
is the only difference between CSC and the other approaches. We can
imagine that CSC sometimes subsamples too harshly the data and thus
misses some of the clusters.

Figure 5.12: Clustering error for the dif-
ferent structured blocks, as a function of
the kernel scale on the left (medians over
100 trials), and for a (manually) fixed
scale on the right (violin plots from 100
trials, with first/last deciles and median
in plain line, mean in dotted line). Us-
ing m = 4kd, synthetic data following
(4.5) with p? = 10. Dashed lines on the
left indicate the kernel scales used for the
violin plots.

22 which is expected due to its © (k) com-
plexity

fffffffffffffff - Tam ™" @;.? oo

Modularity
© O O O
AN 0 O

2
WI2h oo = W
é 3h -l IR = - -0el7? e @5)_’__’ T (24(18) -
Boap fLoo =T [RREREE T T
k=64 k=128 k = 256

Method Features Subs. Sk. matrix Clustering

— SC spectral No n/a KM
— CSC random Yes n/a KM
— S2C random No Dense CL-OMPR
— FSa2C random No Structured CL-OMPR
— HS2C random No Dense Hierarchical
— HFS2C random No Structured Hierarchical

5.4 ToOWARDS THEORETICAL GUARANTEES

Experiments conducted in the previous sections suggest that using
structured matrices does not degrade the learning performance, at
least for the clustering task on which we focused for conciseness?3. In
this section, we shall try to investigate how existing statistical learning
guarantees mentioned in Chapter 2, such as the ones for compressive
clustering, could be adapted when using structured matrices.

We first review in Section 5.4.1 the structure of existing guarantees,
and prove in Section 5.4.2 that some of the blocks induce a Gaussian
kernel, which allow to reuse a substantial part of existing results. We
then discuss in Section 5.4.3 how concentration results can be adapted
when using structured matrices.

5.4.1

We recall*4 that existing guarantees for compressive learning methods

Adapting existing results

have been obtained by establishing a lower restricted isometry property
(LRIP) of the kind

V1,7’ e 6, ||T_7',HA£(H) < C@”-A(T) — AT (5.9)

for a well-chosen model set &. In the following, we denote k4 the
kernel associated to a specific feature map ¢ and « the associated mean
kernel, i.e.

(®(x), ®(y)) and (5.10)

R@(X,y) = H<X7Y) £ E<I>K/<I’(X7y)a

3-

where the expectation on ® denotes the expectation on the randomness
of ® which includes the draw of €2, should it be using i.i.d. or structured
features. The same notations are used for the implicit extensions of
these kernels to distributions (cf. (2.27)).

107

Figure 5.13: Boxplots of modularity (the
higher the better) and clustering time
for k = 64,128, 256. Only the learning
times are displayed for sketching meth-
ods; sketching times are much smaller,
even on a single core. All experiments
were run on Intel(R) Xeon(R) CPUs
E5640 and repeated 30 times (or less for
experiments that were too long; the num-
ber of iterations is indicated below in
these cases, and FS2C does not appear for
k = 256). Owing to the long runtimes
of the different methods, our goal here is
not to get statistically significant results,
but rather and idea of how the different
methods compare. The table is a sum-
mary of the different methods (in the or-
der of the boxplots, from left to right).
This experiment was produced with an
older code base relying on the sketchML
Matlab toolbox [234], and was not ran
again because of the long runtimes.

*3 We will see in Part IV that similar ob-
servations can be made for PCA. We ex-
pect that the same holds for density fit-
ting, although we did not conduct the
experiments. Moreover, in this case the
structure of the blocks cannot be fully
leveraged during the learning phase.

24 Cf. Section 2.2 for the general method-
ology.

108

We also denote

Iy ol 2 S JAGry) — Al (5:10)
- %Z|<Wl’¢%>_<ﬂ2v¢wj>|27 (5.12)
=1

where bo, denotes the feature function associated to the frequency w;,
and using the inner-product notation (cf. Appendix A.2). Asexplained
in Section 2.3.3, this quantity can be interpreted as the empirical ver-
sion of the (squared) MMD, and extended to the set of finite signed
measures.

Structure of the proof As briefly discussed in Section 2.3.4, one way
to establish the relation (5.9) is to first prove that a LRIP holds w.r.t.
the pseudo-norm |||, associated to the mean kernel, i.e.

V7,7 e 6, |1 =T lacp < Crllr =7, (513)

for some C,, < 0o, and then to prove that forany 0 < 6 < 1,

I — 712
VT,T’E@,l—(sS—/;Sl-l-(S (5.14)
lr—'|

holds with high probability on the draw of ® provided m is large
enough. Indeed, when both Equation (5.13) and (5.14) hold (with
respectively constants C,. and), then (5.9) holds as well with constant
C., = C.(1— §)Y/2. These two parts of the proof call for different
tools.

LRIP for the mean kernel In sight of (5.13), it is useful to introduce
the normalized secant set S,.(&) of &, defined as

5.(6) 2 {;| 6,7, > 0}. (5.15)

T =71l

Using the implicit extension of the semi-norm || 5 £4,, to finite signed
measures>, the lowest constant C,, such that (5.13) holds can be writ-
ten €, = sup, s (g ”NHA[:(H)'

This quantity can be upper-bounded under some assumptions® on
the kernel. Bounds have in particular been computed for the Gaussian
kernel w.r.t. the models of mixtures of separated®” and bounded Diracs,
and mixtures of Gaussian distributions with fixed covariances and
separated and bounded centers. We refer to [6, Theorem 5.10], and
to appendix D.2 of the same paper. We do not go deeper into the
elements of the proof, but stress that (5.13) only depends on the mean
kernel, and thus existing results can be reused for any construction of
the feature map which yields a Gaussian kernel in expectation. We
will see in Section 5.4.2 that this holds in particular for random Fourier
features obtained using structured My or M, p» blocks.

* of. Appendix A.2 for more details

26 Especially a “coherence” assumption.

*” We will see in Chapter 10 that such a
minimum separation hypothesis is nec-
essary for the LRIP to hold.

Concentration The concentration property (5.14), on the other side,
depends explicitly on the nature of the features. Using again the defini-
tion of the secant set, it is equivalent to showing (for m large enough)
that with high probability on the draw of @,

VueS,,

lel?, —1| <6, (5.16)

This result can be established by first proving a pointwise concentra-
tion result for any fixed i € S,.(6), and then generalized to a uniform
result by controlling the covering number?® of the normalized secant
set for some well-chosen metric. Here again, the covering numbers
only depend on the chosen metric and on the mean kernel (via S,.(&)).
In particular, existing results have been obtained for the metric

d(my, my) = supl[(my, ¢,)[* — [(my, 6,)],

where the supremum over w is implicitly taken over the support of the
chosen distribution, which is R? both for dense frequencies and when
using M = and Mg blocks. Hence existing results can be leveraged
for features maps which yield a Gaussian mean kernel; in this case,
only a pointwise concentration result needs to be established. In the
case of M s blocks, the support of the marginal frequency distribution
is not R? and computing covering numbers precisely might be more
challenging, however the distance obtained when taking the supremum
over R can still be used to obtain an upper-bound on the desired
covering number.

A note on existing results on structured features As the structured
blocks used in this chapter have been used in other contexts in the
literature, some theoretical properties have been established. However,
these results cannot directly be leveraged in our setting. In particular,
most concentration results hold for the kernel itself, but are not par-
ticularly useful in order to establish (5.16). In the case of M s blocks,
specific results have been developed for cross-polytope LSH [220], but
rely on specific assumptions which are not satisfied in our case.

5.4.2 Induced kernels

We first justify the normalization factors used in the definition of the
square blocks, and then prove in Lemma 5.6 that the mean kernels
associated to random Fourier features when using the M, - and M
blocks are Gaussian.

The blocks Mg, Mg p2 and Mﬁs always have normalized rows.

Proof: We deal with the three settings separately.

= For M£3, as D, D,, D, contain Rademacher entries on their

diagonals, we have Vi € {1,2,3} D,D! = I,. Furthermore, the

109

*#The covering number of a set is the
minimum number of elementary balls
needed to cover entirely this set.

110

Walsh-Hadamard matrix satisfies HH” = dI,;, hence
(HD,HD,HD,)(HD;HD,HD,)" = ¢°I,

which justifies the normalization by d*/2.

= In the case of M, we observe® for any draw of D g, IT, D, that
(HD,IIHD ;) (HDITHD ;)" = dHDZH”,

whose diagonal elements all take the value d|D||3, as every
entry H,; of H satisfies H EJ = 1. Hence we normalize each block
by d"2|Dg| -

= For M7,

o2 We have for the same reasons

(HD;HD,HD,)(HD,HD,HD,)" = ¢’ HD2H",

for any draw of D, D,, D, and thus the normalization factor
yielding unit rows is d|D | g

The marginal distribution of any row of a block M or M7, _, is

GR?

uniform on the unit sphere.

Proof: By Lemma 5.4, the rows of the blocks are on the unit
sphere. To prove uniformity, we will show that all rows of
the unnormalized® blocks U, = HD(d"Y/?ITHD) or U, £
HD((d 'HD,HD,) have i.i.d. normal entries. Indeed, if a vec-
tor x is a standard normal random vector, i.e. x ~ N (0,1,), then
y = x/|x||5 is on the unit sphere and invariant by rotation3', and
thus uniformly distributed on the unit sphere.

Let h; denote the i-th column of H. For any i € [1,d], v{ =
hDy; is a vector of i.i.d. standard normal random variables (as
D¢, itself has i.i.d. standard normal entries).

Note that the i-th row u of both U = U, and U = U, can be
written u] = v O with O € O(d) independent from v;, where
O(d) denotes the orthogonal group. Hence u;, ~ A'(0,007 = 1)
as a linear transformation of v, ~ N(0,1;). This proves that all
the entries of u, are normal and identically distributed (but this
does not prove independence).

The fact that O is orthogonal and independent of v, implies
that the entries of u; are independent using a result from Lukacs
and King3* [235] (which can be applied here given that all the
moments of all the entries of v, exist), which concludes the proof.

It is important to note that M,, does not satisfy this property. In-

deed, as all entries of H,D,, D,, D are in {—1, 0, 41}, the distribution
of the rows of an Mgs block is discrete. This phenomenon can be ob-

served on Figure 5.14 which shows the distribution of w’u for a fixed

vector u when w is either uniform on the unit sphere, or follows the

29. This result was already in [77],
although the normalization factor

d1/2\|DGH;/2 given at the end of the
proof seems to be a misprint.

30. More precisely, we keep the con-
stant normalization factor, but omit the
HDGH}1 term.

31. For any orthogonal matrix O e
O(d), where O(d) denotes the orthogo-
nal group, Ox/|x|, = Ox/|Ox|,, and
Ox and x are identically distributed by
invariance to rotation of the multivariate
normal distribution.

32. Note that orthogonality of O en-
sures that the entries of u, are not corre-
lated, but this does not imply indepen-
dence contrarily to what is stated in [77,
Section 3.2], even using the fact that
v,; has normal entries (counter-example:
X ~N(0,1) and Y = RX with R fol-
lowing a Rademacher distribution).

marginal column distribution induced by the block M 5.

d=8u=][1,0,0,..] d=32u=][1,0,0,..]

25 F

111

d =256,u=11,0,0,..]

-0.50

2 F

0.0

-0.6

0.3 03 0.6

We can see that when u is the first vector of the canonical basis,
then the distribution of w’u obtained when using a structured block is

Tu is the top left element of

not only discrete (which is expected as w
M s in this case), but also quite different from what is obtained in the
uniform setting. This is not necessarily detrimental for learning (as
observed on clustering experiments), but makes the analysis of this
setting more difficult.

A consequence of Lemma 5.5 is that the kernel induced by a feature
map of random Fourier features when €2 is made of M. or Mg
blocks is Gaussian. This is a relatively straightforward consequence
of Bochner’s theorem33 when using full blocks34; we propose here a

formulation of the result which takes into account padding operations.

The kernel induced by the random Fourier feature map? x —
(%), where X = [x”;0]” € R% is the padded3® version of x and
when using a frequency matrix = MS e R%*™» where
= S e R™»*™» is a diagonal scaling matrix3” with i.i.d. diagonal
entries S;; = R, /o, where R, ko Xd,;
* M e R%*™» is the concatenation of square i.i.d. My or M 2
blocks (cf. definitions 5.2 and 5.3),

is an unbiased estimator of the Gaussian kernel, i.e.

% — v
Vx,y € R% B [L397(%) #(9)] = exp (—”2—y”) . (5.17)
O’K

-0.25 0.00 0.25 0.50 -0.2 -0.1 0.0 0.1 0.2
d=32,u~U(S41 d =256, u ~U(S)
-~ U(SY) 6
T w ~ first column of M 3
d=3 51
z (1—x2%) 2
4k
sk
s
1k
o) N — e w—n
0.6 03 00 03 06
Figure 5.14: Distribution of w”u for both
u = [1,0,0,...] and one draw of u ~

U(S 1), when w ~ U(S4™) and w fol-
lows the marginal distribution of the first
column of a Mps block. Histograms
over n = 105 draws of w (u is fixed).
The green dashed curve corresponds to
the true probability density when w ~
U841y,

3 Cf. Theorem 2.3
34i.e. when d is a power of 2

35. Cf. Definition 2.5.
36. We recall that d,, = 2logs(d)],

37. As described in Section 5.2.1

112

Proof: Let M = [M,, ..., M| be the decomposition in blocks of M,
where b denotes the number of blocks used in the construction.
LetS, ..., S, denote the d,, x d,, square blocks of the diagonal of S.
Letd, = 2[log:(d)] e the dimension of the square blocks3®. Let

KiX,y i@REF(i)T¢RFF(}~,)

denote the kernel induced by the feature map, where X,y R
are the zero-padded? versions of x,y € R%.

We now assume for conciseness m = m,, however note that
subsampling the last block M, as described in Section 5.2.3 does
not change the result as all the rows of a random block M, have
the same marginal distribution*’. By independence of the blocks,
and by Lemma 5.5, we have

b
Eqlr(y,y)] = iESI,...,Sb,Ml,...,Mb Z eXP(L(MiSi)T(X - Y))
i=1
1

= d_Esl7M1 exp(L(Mlsl)T(i - 5’))
P

(i) R .7~ -
= E¢~u(sdr1),R~Xdp exp (L(U—SO)T(X - Y)>
5% —9))

=E exp(uo’ (X —§y

1
o~N(0,—51
@O~N(2 dp>

Let w denote the first d coordinates of &. When & ~ N (0, U%Idp),

K

we have w ~ N (0, U%Id), and hence

Baley)] =B, (o 1p,) EXP(x =)

® x=ylj
20,% '

5.4.3 Concentration

The previous subsection established that random Fourier features com-
puted using M z> or Mg blocks both induce a mean Gaussian kernel.
In light of Section 5.4.1, the only missing element in order to control the
excess risk is the pointwise concentration of ||- ||ib on the normalized
secant set. That is, we need to show that for any § > 0 and p € S,.(6),

Il —1] < 6. (5.18)

holds with high probability on the draw of the feature map ®. Indeed,
if such a result holds for each i € S,.(&), it can then be extended to the
whole secant set via its covering number as discussed in Section 5.4.1.
We thus discuss the strategies that could be used to establish (5.18) in
this section.

In the following, we assume for simplicity that m = bd, that d is
a power of 2, and that €2 is drawn by concatenating b square blocks
(B;)1<i<p of d frequencies (wé.)lgjgd each. Using the inner-product

38. We recall that this is required as
the Walsh-Hadamard matrix exists only
for powers of 2.

39.ie. % = [xT,0, ..., 0]T with d,—d
Zeros.

40. By Lemma 5.5.

(i) By Lemma 5.5, which holds for each
of the rows of the block.

(ii) By (2.25), which comes from
Bochner’s theorem (Theorem 2.3).

notation*' and the characterization of the MMD*?, we have for any
eS8, (6)
2
lells,,

)3 (X0 CEE

W(B;,) (5-20)

I
S |-
" 1M-

(>

HMS i\

where W (B,, 1)

1
b
E V(o) (5.21)
d “j

(.

and Y (w, 1) 2 | (11, 6,,)|”. (5.22)

Note in particular that the W (B,, 1) are independent, whereas the
components which appear in (5.21) are not. This is in contrast with
the setting where the frequency vectors wj, ..., w,, are drawn indepen-
dently, in which case

m

I, = =3 V(.10 (523)
m

with independent (Y (w;,)); < <, Previous works obtained concen-
tration results in this setting and for the Gaussian kernel by leveraging
this independence, either via the Bernstein theorem (thus bounding
Y (w,) for p e §,(6) and its variance) [5, Lemma 5.5], or by bound-
ing higher moments of Y (w, 1) [6, Lemma 5.11]. This yields in both
settings a concentration of the form

Pz, =1|>1] <2ep(—) (529)

for some constant C'y, which is naturally different in the two settings
but always independent of the dimension d. For instance to apply
the Bernstein theorem, Cy is a bound on both Dy = sup_ Y (w, u) —
inf Y (w, 1) and on Var[Y (w, u)].

In our case, similar concentration results can be applied on the
variables (W(B;, 1)), <;<, provided that the relevant quantities can be
bounded, however the concentration will then increase proportionally
to b only, and not proportionally to m as in (5.24). This means that, for
instance if we rely on the Bernstein theorem, in order to obtain a similar
concentration result compared to the independent setting*3, one needs
to bound Dy, = supg W(B, p) — infg W(B, i) and Var[W (B, p1)] by a
constant Cy;, which must satisfy Cy, < écy. Although obtaining a
factor 1/d on Dy, compared to Dy seems very unlikely, we expect that
the structural properties of the random blocks can at least be leveraged
to derive a tighter bound on the variance, which would at least provide
finer concentration results in the low-deviation regime (i.e. when ¢ is
small in (5.24)).

Yet, deriving a precise upper-bound on the variance of W (B,) is
not straightforward due to the expression of W (B, 1), and our tenta-
tives in this direction remain unsuccessful so far.

It should be noted that the bounds derived in the independent set-
ting can still be reused** albeit being pessimistic in our case, which

113

#Cf. Appendix A.2.
Cf. Section 2.3.3.

43 Which can be expected given empirical
observations.

#Indeed Dy, < Dy, and the bounds
proposed on Var(Y (w, 1)) in [5, Lemma
5.5] can also easily be checked to be valid
upper-bounds for Var(W (B, p)).

114

is better than no result at all. However, the control of the excess risk
will only hold with an additional factor d on the sketch size, i.e. with
high probability provided that m = k?d? (up to log factors) for clus-
tering, while only m = k?d is proved to be sufficient with independent
frequencies [5, Lemma 5.7] (and kd seems sufficient empirically).

5.5 PERSPECTIVES

In this chapter, we gave an overview of the diversity of structured ran-
domized transforms existing in the literature, and proposed one way
to adapt these ideas to our context. Through extensive experiments
for the clustering task, we showed that using fast transforms indeed
reduces greatly both sketching and learning times when the dimension
is large enough, without degrading the clustering quality. This opens
the way for new kinds of applications on high-dimensional data. This
could also reveal to be very useful if the dimension is increased on
purpose: we considered here the standard k-means task, but could
simply perform kernel k-means4> by converting each data point to
an intermediate feature space when sketching, in which case the in-
put dimension (for clustering) would be artificially increased. The
biggest algorithmic constraint for larger experiments is maybe now the
complexity with respect to k, as CL-OMPR scales in ©(k?).

Naturally, deriving statistical learning guarantees for these struc-
tured features is a challenge as discussed at the end of the chapter. We
expect that strong concentration properties can be obtained for both
M 2 and Mg blocks, which would lead to a control of the excess risk
with a smaller sketch size. Obtaining guarantees for the block M s is
certainly more complicated, and our tentatives in this direction have
been unsuccessful so far; we leave this extension for future work.

To conclude, we also note that the usage of optical processing units
has been considered in the literature [236, 79], and could be used
as an alternative to structured matrices for high-dimensional applica-
tions. This technology seems promising as it could allow to perform
multiplications by random matrices in constant time.

#1.e. k-means using a custom kernel to
measure similarity between data points
in place of the euclidean inner-product.

Part II1

CoMPRESSIVE CLUSTERING WITH

MEssSAGE PASSING

Chapter 6
Compressive Clustering with
Approximate Message Passing

Note The contributions presented in this chapter, which have
been published in IEEE Transactions on Signal Processing [26], are
a joint work with Evan Byrne and Philip Schniter, following a
3-month mobility performed during the PhD at the Ohio state uni-
versity. During this collaboration, we improved on multiple points
their initial work published at the Asilomar conference [237],
which already contained some of the core ideas that will be ex-
posed in Sections 6.2 and 6.3.

E INTRODUCED in Chapter 2 the compressive learning frame-

work, and exposed how it has been used for clustering [2].

This has been done using the random Fourier feature map

given in (2.5), and using CL-OMPR for reconstruction (cf. Algo-

rithm 2.1). In this chapter, we introduce an alternative algorithm to

recover the cluster centers from the sketch, named CL-AMP (com-

pressive learning via approximate message passing), which is in most

settings faster — it especially scales with the number of clusters & in

O(k?) rather than O(k®) — and more accurate, especially for smaller
sketch sizes.

An introduction to the family of message passing algorithms is pro-
vided in Section 6.1, and the problem of recovering the cluster centers
from the sketch is translated into this formalism in Section 6.2. Sec-
tion 6.3 details how the existing SHyGAMP algorithm can be adapted to
our setting, and an experimental validation is proposed in Section 6.4.

AN INTRODUCTION TO APPROXIMATE MESSAGE
PAssING

6.1

Message passing algorithms, also known as belief propagation algo-
rithms, form a family of methods for inference in probabilistic models.
We propose in this section to expose the key ideas of these techniques
and related tools (Section 6.1.1), and explain how to get from the stan-
dard sum-product algorithm (Section 6.1.2) to the SHyGAMP algo-
rithm (Section 6.1.3) that will be used in Section 6.3. We only provide a
brief introduction to message passing techniques, and refer the reader

Contents

6.1

6.3

6.4

6.5

An introduction to Approximate
Message Passing 117

6.1.1 Probabilistic model and factor
graph for linear regression | 6.1.2
The sum-product algorithm | 6.1.3 Ap-

proximate message passing
Compressive clustering as a high-
dimensional inference problem 122
6.2.1 Model of the sketch
Bayesian formalism

| 6.2.2

Inference of the centers using
GAMP 124

6.3.1 From GAMP to SHyGAMP |
6.3.2 Solving the remaining inference
tasks | 6.3.3 Hyperparameters learn-
ing | 6.3.4 Initialization and main algo-
rithm

Experimental results 131

6.4.1 Synthetic data | 6.4.2 Real
datasets

Perspectives 135

118

for instance to the book Information, Physics, and Computation [238] of
Montanari and Mézard for more details.

6.1.1 Probabilistic model and factor graph for linear re-
gression

In order to understand how such techniques are relevant for our prob-
lem, we will consider again the underdetermined linear inverse prob-
lem introduced in Section 2.1, i.e. recovering a signal x, that we will
assume in R? for simplicity’, from noisy linear measurements

y=Ax+e. (6.1)

where A is known and e is noise. We mentioned that this problem
can be addressed when x is assumed to be sparse via basis pursuit
denoising, i.e. via the optimization problem2

min L Ax—yl3+ \R(x) with R(x) = [x|,, (62)

where A\ > 0 controls the tradeoff between data-fidelity and regular-
ization. In the case of compressive sensing, the regularizer is simply
R = - |; and promotes sparsity as x is assumed to be sparse, but other
regularizers might be used for other applications.

Bayesian formulation To understand belief propagation, we need to
reformulate this in a bayesian setting. Using the squared l,-norm in
order to measure the difference between observations y and Ax can be
implicitly interpreted as modeling the noise as a Gaussian random vari-
able. In this case, if we define z = Ax, the probability of observing y
knowing z is p(y|z) o exp(—% |y —z|3), where the variance is arbitrary
chosen to 1 — controlling this variance is equivalent to rescaling A.

Note that we will in this chapter seldom give explicit normaliza-
tion constants: unless otherwise specified, we assume normalization
factors can either be computed by integration, or simply need not be
known. Similarly, the regularizer R can be interpreted as a prior density
p(x) < exp(—AR(x)) on the variable x, so that Equation (6.2) becomes
equivalent to maximum a posteriori (MAP) estimation of x under the
posterior density p(x|y) «x p(x)p(y|x):

min | Ax — y3 + AR(x) = min —(logp(x) + log p(y[x)
= max log p(x[y).

Instead of computing the MAP estimate, i.e. looking for the principal
mode of the posterior density, we could rather compute E[x|y] (where
the expectation is taken with respect to p(x|y)), which is known as the
minimum mean square error (MMSE) estimator3. MAP and MMSE
estimation are the two main inference tasks for which message passing
algorithms have been designed and can be used — although they might,
by doing so, provide additional information such as estimates of the
marginal distributions.

* The algorithms can be adapted to the
complex case, however this is not rele-
vant in this chapter.

? For simplicity, we use here the same no-
tation x for the true signal and the opti-
mization variable.

3 Indeed, denoting E[-|y] the conditional
expectation, the estimator x of x with
minimum mean squared error E[|x —
x|3|y] satisfies

LE[|x —x[3]y] =0,
hence /p(x\y)[sc —x=0

and x = E[x|y].

Factor graphs We used previously separable likelihood and priors, in
the sense that they can both be factorized as products of scalar functions.
This derives from the fact that both || - ||3 and | - |, are (additively)
separable functions. If we now generalize our model by using abstract
likelihood and prior functions, while still requiring that they are both

separable, i.e. that they can be written p(y|z) = [, p(y,|2;) and

p(x) =[]~ p(z;), we end up with the generic probabilistic model
m d
p(x|y) o Hp(yy‘Z])Hp(x7,> (6.3)
j=1 i=1

We represent this model in Figure 6.1 using a factor graph, i.e. a
bipartite graph where all square nodes represent the factors of the
model (6.3), circular nodes represent variables, and edges correspond
to statistical dependence relations.

Message passing algorithms proceed by sending beliefs (the mes-
sages) along the edges of the factor graph, i.e. between variables and
factors. We will explain the ideas behind the sum-product algorithm
(SPA), which is the standard algorithm for MMSE estimation, and
describe how it has been generalized via multiple successive improve-
ments. A very similar algorithm can be derived for MAP estimation
(the max-sum algorithm, or MSA), but we omit it here, as our applica-
tion will be recasted into an MMSE inference task.

6.1.2 The sum-product algorithm

The sum-product algorithm was introduced by Pearl [239]. After ini-
tialization, the different nodes (variables and factors) communicate via
messages that are all sent simultaneously, i.e. at time ¢ each node sends
messages to its neighbors using the information received at time ¢ — 1.
These messages, which are sent along the edges of the factor graph,
take the form of probability densities and should be interpreted as
beliefs about the marginal distributions of the variables (x;), ;- 4, and
we will as a consequence denote them as functions of these variables.
Each factor p(y;|z;) communicates to each variable node x; a belief* de-
noted M,_,;, which is computed using the information (beliefs) coming
from all the other® nodes (2;),c[; 4; and the value y; (deterministic
scalar), and reversely each node z; sends to each factor p(y;|z;) the
(log-)marginal distribution M, ; that it estimates using its own prior
and the messages coming from all other factors (p(y;]2;))ic[1,m ;- These

messages are defined (up to normalization) as

expOw))x [plyls =aB [[M @) (64)
(Iz)zs[[l,d]]\i l#1
exp(M;_;(z;)) < p(z;) exp (Z Mlai(xi)>) (6.5)
I#5

where ajT is the j-th row of A and where the messages on the right-
hand side are the ones received at the previous iteration (we avoid
parametrization with a time variable for simplicity). It should be
noticed that no messages will be sent from the variables (y,);<;<,,

© 9

®

119

p(zq)

p(y1]21) p(s)

P(Yal22) p(z3)

p(zy)

P (Ym |2

p(zq)

Figure 6.1: Factor graph of the model
defined at Equation (6.3). Square nodes
correspond to the factors. Plain green
circles correspond to observed variables,
and the dashed blue ones to the variables
to infer.

4Hence, depending on the context, x;
can refer both to the node corresponding
to the variable x;, or to a free variable
when it appears in a probability density.
5 In the following, we use the backslash
to denote exclusion of one element, e.g.
[1, d]\¢ is used as a shorter notation for
[1,di\{i} ={1,...,i—1,s+1,...,d}.

120

(which are observed, and only have one neighbor), and messages sent
from the prior factors will be constant over time as, here again, each
prior factor has only one neighbor in the graph. Although the sums

in egs. (6.4) and (6.5) always exclude one term®

, it is possible at any
time to estimate the marginal probability of x, using a variant of (6.5)

where all the messages are used:

p(x;ly) < p(z;) exp (Z Mjai(£i)> . (6.6)

The algorithm, although presented here in the specific case of the
model (6.3), can naturally be used in any factor graph. It has initially
been introduced for inference in factor graphs that contain no loops
(i.e. trees), and in this case it estimates exact posterior marginals after
two iterations — assuming one starts propagating the messages from
the leaves of the tree. When the factor graph does contain loops as
in our example, the algorithm can still be used, but convergence is
not granted, and convergence to poor estimates of the marginals is
possible [240]. This setting is referred to as loopy belief propagation.

6.1.3 Approximate message passing

The sum-product algorithm, when applied to the linear model de-
scribed above, requires sending 2dm messages at each iteration, and
thus becomes quickly too expensive in high dimension. Under some
specific assumption on the matrix A, and in the large-scale limit when
d,m — oo at constant ratio, it is possible to use the central limit theorem
and Taylor developments to approximate the expressions of the mes-
sage of the sum-product algorithm [241, 242]. We omit these deriva-
tions here for conciseness, but notice that they allow to approximate
the messages by Gaussian densities, so that only mean and variances
need to be computed. Moreover, by exploiting similarities between
messages, the total number of messages exchanged at each iteration
can be reduced to m + d instead of 2md. This idea was first proposed
in the particular case of a separable likelihood p(y|z) = [}, p(y;|2;)
where each p(y,|z;) is Gaussian [241], and we refer to the resulting
algorithm as approximate message passing (AMP). This setting was
generalized by Rangan [242] to the case where only separability of the
likelihood and prior are assumed, which is much more generic and
covers many different models. The resulting algorithms” are refered
as GAMP (Generalized AMP). We consider this setting from now on.

An intuitive way to understand the GAMP algorithm is that it com-
putes at each iteration and for every j [1,m] a pseudo-prior N'(p;, q?)
of z;, which can be combined with the likelihood p(y,|2;) to compute
posterior estimates of the mean and covariance of z;. Similarly, it pro-
vides at each iteration and for each i € [1, d] a pseudo-measurement r;
which follows the model r; = z; 4 v; where v; ~ N(0, ¢}) for some ¢,
and which can be combined with the prior on z; to produce posterior
estimates of the mean and covariance of z,. Detailed steps are provided
in Algorithm 6.1, where the expectations and variances at lines 8, 9, 15

S0 that information is not “sent back”
to where it comes from.

7 There are at least two versions of the
algorithm for MAP and MMSE estima-
tion, and other small variants have been
proposed, thus GAMP should rather be
considered as a family of algorithms.

and 16 are computed with respect to the following densities (defined
up to normalization)

p(x; |755q") o< pla)N (w7, qf) (6.7)
p(z; Y5 By 47) o< p(y;l2)N (25 D5, 45)- (6.8)

Note that in all the chapter, quantities with hats denote estimators

"

while variables starting with the letter “q” denote variances (and later
covariance matrices/vectors).

Input: Prior p(x) and likelihood p(y|z), which are used to define
the densities p(z; | 7;;¢") and p(z; | y;, p;; ¢°) in egs. (6.7)

and (6.8).
1 X+ [xp(x)dx // Use prior for initialization
2 ¢F « [|2; — 7;°p(x;)dx; for each i € [1,d]
3 S+ 0
4 repeat
// Output nodes

1 1
s | ¢ ARG XL, @)
6 p«— AX—S¢P // size m
7 for j € [1,m] do
8 qj < Var(z;ly;, pj; ¢") // Using (6.8)
9 Zj < Elzjly;, 055 4] // Using (6.8)
w | gt e (1= (5™) /gn) /g7
11 S« (z—Dp)/¢" // size m

// Input nodes
= | ¢ (G|AlRe)

13 r <—CE+(]TAT§ // size d
14 fori e [1,d] do

15 q;f < Var(z;|7;;q") // Using (6.7)
16 T; < E[z;]7;; "] // Using (6.7)

17 until convergence
18 return X

Note that multiple variants of this algorithm exist — different ap-
proximations can be combined, providing a tradeoff between accuracy
and efficiency. The version given here is the “scalar” version of the
algorithm [242, Algorithm 2, MMSE setting |, which uses scalar vari-
ances ¢”, ¢°, ¢", whereas the standard version of the algorithm would
use separate variances (qf)lgjgm7 (¢})1<j<m> (4)1<i<q- This modifica-
tion can be justified when the entries of A all have roughly the same
magnitude, or alternatively by the law of large numbers when A has
ii.d. components and the dimensions d and m are large. With this
simplification, the dependence on A appears only® at lines 6 and 13 as
multiplications by A and A”, whereas two more matrix multiplications
would otherwise appear?.

AMP and GAMP methods have been used for various applications,
including the LASSO problem (cf. Chapter 2) where they usually per-
form better than other classical methods such as FISTA [243] provided

121

Algorithm 6.1: MMSE-GAMP, scalar ver-
sion.

8 Which is why it is sometimes referred
to as a “first-order” algorithm.

° These two multiplications do not actu-
ally directly involve A, but rather its ele-
mentwise squared version (and its trans-
pose). Apart from the cost of the multi-
plication, this can also make the use of
fast transforms problematic if this opera-
tion cannot be performed efficiently.

122

that A is well conditioned — and in particular when A has i.i.d. normal
entries. When this is not the case, damping is often used [244, 245]: at
each iteration, each variable is updated to a weighted combination of
the new value computed according to Algorithm 6.1, and the value ob-
tained at previous iteration. We use this terminology in the following,
but note that many “inertial” methods in the optimization literature
rely on similar ideas.

Analysis Both AMP and GAMP approximate well the sum-product
algorithm when A is large and has i.i.d. sub-Gaussian entries, and
can be analyzed using the state-evolution framework [246, 247] which
proves that they converge to MMSE estimates in certain regimes. The
fixed points of GAMP can also be shown to correspond in some settings
to critical points of a constrained optimization problem on the posterior
density (for MAP estimation) or a closely related free energy function
(MMSE estimation) [248].

Complexity The cost of the linear operations performed by GAMP
when using a dense matrix A is ©(md) per iteration — we recall that
the matrix A has size m x d —, and is dominated by the two matrix
products involving A and its transpose. The complexity of lines 8, 9,
15 and 16 depends on the chosen prior and likelihood, however it is
typically smaller than the cost of linear steps. As mentioned earlier,
using the scalar version of the algorithm reduces the number of matrix
multiplications, and does reduce a bit the total amount of memory
to allocate, but it does not change the overall complexity. Structured
matrices (e.g. based on the fast Fourier transform) can be used to
reduce the computational cost and have empirically shown to perform

well'°.

Further extensions We presented in this section the basic ideas of ap-
proximate message passing methods. Multiple further extensions exist.
In particular, for compressive clustering we will use the SHyGAMP
(Simplified Hybrid GAMP) algorithm. We discuss below how this
algorithm differs from Algorithm 6.1, and how it can be used in our
setting. We will also see that prior and likelihood functions sometimes
depend on hyperparameters, that can be tuned simultaneously using
the expectation-maximization (EM) algorithm as initially proposed by
Vila and Schniter [249].

> We are not aware of papers in the liter-
ature using constructions similar to the
ones used in Chapter 5 for message pass-
ing, but our experiments suggest that
such matrices perform almost as well as
Gaussian i.i.d. ones, at least for this com-
pressive clustering application.

6.2 COMPRESSIVE CLUSTERING AS A HIGH-DIMENSIONAL

INFERENCE PROBLEM

We introduced in the previous section the family of message passing
algorithms, and focused on the case where measurements y are con-
sidered to depend — via an abstract separable likelihood function — on
the linear measurements z = Ax, which is known as a generalized
linear model. In this section, we detail how the task of learning the

cluster centers from the sketch can be modeled in a similar way: we
will see that the sketch can be seen as a collection of generalized linear
measurements of the centroids via the matrix of frequency vectors. We
first express the expected sketch under a Gaussian mixture data model
in Section 6.2.1, and use this model to formulate the learning problem
as a Bayesian inference task in Section 6.2.2.

6.2.1 Model of the sketch

The CL-AMP algorithm relies on the modeling assumption that the
data is drawn i.i.d. according to the Gaussian mixture model

A

-

Il
—

™

k
aN(c;,X;) with Zai =1, (6.9)
i =1
where c; are the centroids to recover and X, are unknown covariances
— which will not be estimated directly, as discussed below. We denote
C=lcqy..y
We recall that for clustering, the sketch is computed using random
= ®"), so that the
i)1<i<i (that we define as the

c;] € R the true matrix of centroids.

Fourier features according to Definition 2.5 (i.e. ®
sketch of the centroids C with weights («
sketch of 7o = Y1 | 4,) is

k
S¢ = Z o, exp(19Q7c;)

i=1

(6.10)

where the exponential is applied pointwise, and Q = [wy, ..., w,,] de-
notes the frequency vectors. The sketch is not scaled by 1//m. We
define for convenience and for each i € [1, m] the quantities

9; = w2 a; =w;/g;, andz;= CTai' (6.11)

For a fixed w and x ~ N(u,X), the quantity w’x follows"! the
distribution N (w”u, wSw). As a consequence, for any j € [1,m] and
x ~ 7 we have wl'x ~ XF | ;N (w]c;, w/,w;). Thus, using the fact
that E, (02 exp(uz) = exp(tp — 50), the components of the sketch

of the Gaussian mixture'? 7 can be computed for each i € [1,m] as
5; = Ex~7r [exp(LwT)]
*Za exp(wc; — sw!Sw))

_Za exp(9]c ——g aTE)

A
Zji =Tji

The vectors (a;), <<, being drawn (uniformly) on the unit sphere
when drawing the (w;);,,, according to a multivariate normal dis-
tribution as previously assumed, for any i € [1,k] the quantities
(Tji)1<j<m are with high probability well concentrated around their
expectation [250, Theorem 2.1], that we denote 7; and which depends
on tr(3;). Concentration would actually also hold using e.g. structured

orthogonal frequencies'3.

123

' As an affine transformation of a multi-
variate normal random variable.

2 We denote s the “true” sketch, i.e. com-
puted in expectation over the considered
data distribution, and § the expected
sketch measured on n data samples.

3 This result can be seen as a Hanson-
Wright type inequality (a concentration
inequality for a quadratic form in a sub-
Gaussian random variable), however the
general formulation [127, Theorem 6.2.1]
requires the considered random vector X
to have independent coordinates, which
holds for X = w but not for X = a
in our case. The result in [250] relies
on the weaker assumption that (p, X)
is uniformly subgaussian for ¢ ¢ S971,
which holds because a is bounded. This
formulation of the result uses (by oppo-
sition to the “standard” Hanson-Wright
result) an additional hypothesis which
is the positive-definiteness of 33;, which
holds in our setting.

124

As a consequence, when the number n of samples is large, we have

k
S 1
8, Yoy explig;z; — 5057, (6.12)
=1

which is quite convenient as the dependence to the covariance matrices
(2,)1<i<, now only appears via the quantity 7 = [r,...,7,] € R",
which is considered as an hyperparameter, together with the vector of
weights o = [y, ..., ;] (in the probability simplex).

6.2.2 Bayesian formalism

Now that we have an approximation of the sketch of the Gaussian mix-
ture model (6.9), we recast the learning task into a bayesian inference
problem. We denote p(C) the chosen prior density on C (see below),
and p(s|C) the likelihood function of C for an ideal sketch s € C™, so
that the posterior density p(Cls) of C satisfies

p(Cls) o< p(s|C)p(C). (6.13)

We want to return a minimum mean square error estimate (MMSE)
denoted é, ie.
C = E[C]s]. (6.14)

where the expectation is taken with respect to the posterior density (6.13).

Likelihood Using the previous derivations and especially (6.12), the
likelihood is only separable “by blocks” and takes the form

p<S|C) = Hps\z(8j|zj)7 where (615)
i=1
k
ps|z(sj|zj; a,T)=0 (sj — Z o, exp(ngzji — %g?TJ) . (6.16)
i=1

This can be interpreted as a generalized linear model [251].

Prior Due to the nature of the GAMP algorithm used below, and
the way pseudo-measurements are produced at each iteration'4, we
impose here a prior which is factorized on the rows of C, that we denote
(¢')1-;<4 by opposition to the centers themselves, which are columns
of C and denoted (c;),;-, above. We write it

d

p(C) 2 [pelc). (647)

i=1

We will now detail how belief propagation can be used for approxi-
mate inference of (6.14).

6.3 INFERENCE OF THE CENTERS USING GAMP

Although we made clear how our problem could be casted into an in-
ference task, Algorithm 6.1 cannot be used directly to solve it and some

*Indeed, the scalar (7;);<;<4 in Algo-
rithm 6.1, which become k-dimensional
vectors (T';);<;<q below, should be inter-
preted as pseudo-measurements of the
rows of C, hence a prior factorized e.g.
on the columns would not be suitable.

details must be provided. We discuss in Section 6.3.1 these adaptations,
and detail in Section 6.3.2 the different approximations performed to
estimate posterior means and variances appearing in the algorithm.
Tuning of the hyperparameters o, Tis discussed in Section 6.3.3, and
the whole algorithm (including initialization and tuning) is given
Section 6.3.4.

6.3.1 From GAMP to SHyGAMP

Firstly, in order to be coherent with previous notations, we will use as a
linear mixing matrix A = [ay, ..., a,,]”, whose each row ajT corresponds
to an /,-normalized column of Q. Then, the observations we have access
to are the entries of the empirical sketch § € C™, thus § takes the role
of the observation vector y used earlier. Similarly, the signal to recover
is now the d x k matrix C, which takes the role of the d-dimensional
vector x above'>

As a consequence, the biggest difference with the setting presented
in Section 6.1 is that the (z;); - ;-,,, are k-dimensional vectors, by opposi-
tion to scalar quantities (z;), < ;,, above. Thus our likelihood, although
it can be factorized by blocks, is not separable as assumed by GAMDP, i.e.
p(s|C) = I}, pyz(s;|z;) but cannot be written []7" Hf’zlp(sﬂ(zj)l).
The Hybrid GAMP algorithm [252] was developed to handle such
structured models and can be applied here; its formulation would
be highly similar to Algorithm 6.1, but with k-dimensional variables
and observations (z;); < j,,- However, this implies that the variances
which were scalars before are now replaced by covariance matrices.
From a computational perspective, HyGAMP would require inverting
m + d different k-dimensional covariance matrices at each iteration.
We will hence rather use the simplified HyGAMP (SHyGAMP) algo-
rithm [253], which diagonalizes all the covariance matrices, and thus
further reduces the complexity of the method.

Algorithm 6.2 details this approach for our setting. We denote, by
analogy with Algorithm 6.1, R = [£,, ..., ;)7 (pseudo-measurements),
We also de-
note diag the operator which extracts the diagonal of a matrix (as a

*) 77’7.]

P = [py,... D,,]" (pseudo-priors) and Z = [z, ...

vector), and Diag the operator which does the opposite, i.e. creates a
squared diagonal matrix with the given diagonal.

Note that our normalization implies [|[A|, = d Compared to Al-
gorithm 6.1. When running the algorithm, the quantities C and Z
will ideally converge towards approximations of the MMSE estimates
E[C|s] and E[Z|s]. Expectations and covariances of the z; and ¢, at
lines 9, 10, 16 and 17 are computed with respect to the densities (up to
normalization)

pz‘&p(zj |s;,P;idP, o, T) x pslz(sj\zj; a, T)N(Zj; p;,QP), (6.18)
Pee(€’ [E;3a") o pe(c’)N(c';7;, Diag(q")). (6.19)
where QP £ Diag(qP). We will discuss in Section 6.3.3 how to tune

the hyperparameters o and 7 by alternating with EM iterations. For
now, we assume they are fixed'® and focus on the algorithm itself.

125

'> We used the notation x for the signal in
Section 6.1 to be coherent with previous
discussions on the linear model and the
literature, and to make clear that x was
a vector while we are now dealing with
a matrix.

*and thus write p(s;|z;) rather than
p(s;]z;; o, T) in the next section

126

1 function SHyGAMP (5, Gy, aF, a, 7)

2 | qf < qf foreachie [1,d] // For the init. of qP
3 é +~—0

4 é — éo // See Section 6.3.4 for initialization
5 repeat

// Output nodes

6 qpkéz:?:lqic // size k
7 P eAé—éDiag(qp) // size mxk
8 for j € [1,m] do

9 qj « diag(Cov(z,|5;, p;; Diag(q®), o, 7)) // size k
10 z; < E[z,|5,, p;; Diag(qP), a, 7] // size k
11 qskl@qp—(i Z’;qu)Q)(qp@qp) // size k
12 S« (Z—-P) Diag(qP)™! // size mxk

// Input nodes

13 qregl(bqs // size k
14 R(—é—FATéDiag(qr) // size dxk
15 foric [1,d] do

16 L q¢ « diag(Cov(c,|t;; Diag(q¥))) /) size k
17 ¢; < E[c;|r;; Diag(q”)] // size k
18 until convergence
19 | return (C,Z, (@})1<jcm)

Complexity The overall algorithm has a computational complexity
of ©(mdkI) when using a dense matrix of frequencies, where T de-
notes the number of iterations. SHyGAMP reduces the initial inference
problem of dimension kd to (m + d) k-dimensional inference problems
(lines 9, 10, 16 and 17). In comparison, CL-OMPR has complexity
O(mdk?). Although it might not be straightforward to compare both
methods without knowing the number of iterations of CL-AMP (which
will typically be larger than k), CL-OMPR is in practice much slower
due to the numerous optimization problems which are solved at each
step. See for instance lines 3 and 5 of Algorithm 2.1, which are both non-
convex optimization problems and are typically solved using L-BFGS-B
(limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm with
box constraints).

Solving the intermediate inference problems in our application of
SHyGAMP is however still not straightforward either, and we now
focus on this issue.

6.3.2 Solving the remaining inference tasks

There are four remaining inference tasks which require attention in the
SHyGAMP method described in Algorithm 6.2. Operations performed
at lines 16 and 17 naturally depend on the prior used. Simple closed
forms exist for instance when using a Gaussian prior. It turns out
that the algorithm is still well defined when using a non-informative
prior (i.e. p.(c’) o 1 for every i € [1,d]), and lines 16 and 17 simply

Algorithm 6.2: MMSE-SHyGAMP for
compressive clustering. Here lines 9
and 10 are computed using the posterior
density (6.18), and lines 16 and 17 us-
ing (6.19). Quantities g, q°, q* are vec-
tors because of the structure of the fac-
tor graph, but do not depend on indexes
i e [1,d],j € [1, m] because we use the
“scalar” version of the algorithm.

become in this case qf < q" and ¢; < T, for every i € [1,d]. We use
this approach in our experiments below as this already works well in
practice.

The difficulties come rather from the estimation of the posterior
mean and covariance of z, computed at lines 9 and 10 using the den-
sity (6.18). In the following, we denote QP = Diag(qP). We need to

compute
~ a1 -
wta [252X ;p, Q%) d, (6.20)
q]z'l = 4 |Zjl]l| p]|Z) (yp],)dzj (6.21)

for each j € [1,m] and I [1,k], where zj;, z; and ¢, are the I-th
elements of respectively z z;, z; and qj, and C;is the normalization
constant of the posterior density, i.e.

C;= Ac p(3;l2))N (z;:p;, QP) dz;. (6.22)

The nature of p, (cf. (6.16)) makes it impossible to derive closed-
form expressions for zj; and ¢7;. Following the idea of approximate
message passing, we w1ll make some additional approximations. For a
given t € [1, k], we rewrite (6.12) as

~ 1 1
Sj & oy exp(bgjzjt - 59?%) + Z Qg eXp(ngZjl - 59]2'7'1)' (6.23)
1<I#t<k
In order to simplify the following derivations, we omit until the end
of this section (and in the appendices) the index j in all variables. We
rewrite (6.23) as

5;~ Byexp(uf;) + Z Brexp(eg(z +m)), (6.24)
1<I#t<k

where 3, = q exp(—%gQTl) vie[1,k], (6.25)

0, = g(z, +ny), (6.26)

and n, ~ N(0,q"). (6.27)

We introduced in this expression the i.i.d. random variables 7, to sim-
plify the derivations, but will eventually consider ¢" — 0 so that (6.24)
matches (6.23). We now rewrite z, and ¢; (the two quantities to esti-
mate) with respect to the posterior mean §, and variance Var(6,|s) of
0,. Derivations can be found in Appendix B.1, and yield the following

expressions
. _ b 0
Zy = : = T . o
1+ % g(1+35)
" %
q" 1
== —————Var(4,s)
L+l ¢2(1+%)
a4 a4z

Both the marginal posterior mean and variance of 6, are still difficult
to compute due to the form of p(6,|s) (provided in appendix, see (B.5)).
We thus approximate the second term (the sum) in (6.24) as Gaussian

127

128

to estimate these quantities. Derivations can be found in Appendix B.2.
The density p(s|d,) becomes with these approximations a generalized
von Mises density [254] and we obtain the following:

_ = 10, — 9@1&‘2
p(6,]s) x exp| K cos(8, — ;) + K, cos(2(0, — ;) — — |
29%q
(6.28)

where the expressions of «,, %,,(;, (, are provided in Appendix B.2.

Hence Z,, g} can be estimated from 0,, Var(6,|s), which can them-
selves be estimated numerically using this density. By doing the same
approximations for every ¢ € [1,k] and' j € [1,m], we obtain esti-
mates of all the desired quantities.

Numerical estimation under the approximated posterior We now
need to estimate E[0,|s] and Var(6,|s) under (6.28). It seems difficult
to obtain a closed form, hence we need again here to use further ap-
proximations, or simply to compute these integrals numerically.
Laplace’s method [255, Section 4.4], which is designed to approxi-
mate integrals of the form [exp(f(x)) dz where fis a twice differen-
tiable function which takes large values and has a unique maximum,
might be relevant due to the form of the posterior. In that case
we would compute the maximum a posterior estimate of 0,, i.e. use

0, ~ 0, map = argmaxp(0,|s), and estimate via a second-order Taylor

d2
—i
still not straightforward'®, but this can be estimated by numerical inte-

expansion Var(6,|s) ~ log p(6,|s)| 6,8, rono” Evaluating ét’M Ap 1S

ptsTper + 1 points centered at gp,

gration. We used a uniform grid of n
with width 2mn,,,,, where n,,., = [n,,,/m\/g%q]]. The parameter n,,
correspond to the number of standard deviations of the prior covered
by the grid. Practical experiments suggest that a good tradeoff between
computational performance and estimation quality could be obtained
pts = 1-

Yet, although extensive simulations have been performed using the

withng, =4,n

Laplace method, it turns out that estimation of E[¢,|s] and Var(6,|s)
directly via numerical integration is often more robust. We used in
that case again regularly-spaced grids centered on gp,, with a grid
width and resolution depending on the order of magnitude of g*¢}.
We omit the technical details for brevity, and refer the interested reader
directly to the implementation for more details (cf. Appendix D). Note
however that implementing all that in an efficient and stable manner is
not straightforward. Experiments suggest that the Von-Mises density
does sometimes takes values of the order of 10° in the log-domain.
Moreover, the distribution can be both unimodal or bimodal depending
on the values of the parameters. Hence, and in spite of our multiple
attemps to get a robust estimation procedure, it might happen that the
algorithm “misses” the principal mode, or that only the principal mode
is found but that all other values measured on the integration grid are
so low that the variance is estimated to zero. Hence, after estimation of

7 We recall that the indexes on j have
been omitted for readability only, but all
the involved quantities here do depend
on j implicitly.

® Especially because the distribution
might be multimodal.

129

the (a%), <<, we add a “clipping” step on these quantities to ensure
that q® will be positive after averaging and avoid numerical issues'®. “Such tweaks are commonly used in
We also use damping on S, q°, C and P to mitigate numerical issues GAMP implementations.

and prevent instability.

6.3.3 Hyperparameters learning

We recall that the likelihood (6.16) depends on parameters o and T,
which we for now assumed to be known. We propose to use the
expectation-maximization (EM) algorithm alternately with SHyGAMP
to estimate these parameters, i.e. we will alternate between a few
SHyGAMP iterations and a few EM iterations. This approach has al-
ready been suggested and used previously for other tasks [249, 253].
For initialization, we chose «; = 1/k and 7; = 0 for each [€ [1, &].

Derivation of EM steps From [249, eq. (23)], and denoting Q7 =
Diag(q7) for each j € [1,m], the EM update can be written

m

(a,7) = argmax Zlk./\/(zj;ij,Q?)logpslz(§j|zj;a,7') dz;,

a>0,aT1=1,7>0 j=1
(6.29)

where z; and q7 are obtained by running SHyGAMP to convergence
under (o, 7). We approximate the Diracin (6.16) by a circular Gaussian
distribution with small variance ¢, i.e.

k
S;— Z *95V5
=1

where c is a constant, and where we used the notations

2
- 1
logps\z(8j|zj;a77-) = _g +c.

12
4,1 £ eXP(*gngz),
A
v = exp(tg;z;)-
Using this approximation, and because optimization is independent of
e and ¢, we have from (6.29)
2

dz.

(6.30)

We propose to solve this optimization problem alternately on o and by

m

(@, 7) = argmin ZékN(zj;ij,Q;)

k
Sj_E Q1451051
a>0,aT1=1,7>0 j=1 =1

gradient projection [256]. Using the notation p;; = exp(tg;Z;; — % g?qj?l),
we have for each index j € [1,m]

k 2
) > | o, Q05— S cuaun| d,
=1
@ -
1)~ ~ > z
=1 Pji-

k

k
Y@@y Y ety aid;
=1 =1

1<t#I<k

130

As a consequence, the gradients with respect to (o)<, and (7;)1<;<,
can be written

a m m
D, Z fila,) = =2 Z 4175 (6.31)
53 j=1
a m m
e Z fila,T) = Zg?qjﬁjl (6.32)
i 5= =
where
Vst = %(E;le) — gy — Z atqjt%<p;[pjt) (6.33)

1<t#I<k

Experimentally, computing the sums in egs. (6.31) and (6.32) using
only on a small subset of the indexes j improves performance without
degrading too much accuracy.

We provide the main algorithm combining SHyGAMP with these
EM steps in the next section (cf. Algorithm 6.4), after describing the
initialization procedure. Note that the Bethe free energy could also be
used as an approximation of the required log-densities (see for instance
[257, Appendix C]). However, our work in this direction resulted in
expressions which are not easier to work with.

6.3.4 Initialization and main algorithm

Let 02 denote the variance of the kernel, which can be assumed to be
known or estimated from the dataset®°. Experiments suggest that a
good initialization procedure for SHyGAMP (cf. Algorithm 6.2) is to
draw C, with i.i.d. entries from A'(0,02) and g = 021.

However, we observed that trying R > 1 different initializations
sometimes helps to avoid spurious solutions. For each of them, i.e. for
each r € [1, R], we can run a few iterations of SHyGAMP to recover an

estimated matrix of centroid C") = [EY), . g)] and then compute

the estimated sketch §") defined as

.y C

k
57 = expligale)”’ — g?n), (6.34)
=1

whose expression follows from eqs. (6.11) and (6.12). Note that we use
the notation S to denote an estimator of the sketch, but this quantity
should not be confused with the variable S in Algorithm 6.2. The
distance to the empirical sketch can then be used as a selection metric
to keep only one of the sets of centroids, and proceed with the rest of
the algorithm. We summarize this procedure in Algorithm 6.3.

We provide the main CL-AMP procedure (with initialization and
EM steps) in Algorithm 6.4. Different criteria could be used to detect
the convergence of this algorithm and of the SHyGAMP procedure,
but the simplest one is maybe to measure the distance between the
recovered and empirical sketches as proposed above for initialization.
SHyGAMP provides indeed all the quantities required for this esti-
mation, and computation is not too expensive. For internal calls to
SHyGAMP, it will be convenient in practice to combine this criterion
with a manually chosen maximum number of iterations.

** We explained in our paper [26] using
ol = HXH%/(nd), which indeed works
well in many settings, but this might still
sometimes be inaccurate. We refer the
reader to Chapter 4 for this matter.

131

Algorithm 6.3: Initialization of MMSE-

1 function Init (8,02, oy, 7) SHyGAMP
2 qg ol // size k
3 forr € [1, R] do
4 ég) < d x k matrix with i.i.d. entries drawn from N (0, 0?)
S(r) g(r z\(r A(r
5 (C< >a Z<)7 ((qj)< >)1§j§m) — SHyGAMP(CO)7 qgv aO? TO)
6 Compute §" according to (6.34)
7 | v ¢argmin_,_p 18 — 5],
s | return (CU 2, (@)) 1< jem)

Algorithm 6.4: Main CL-AMP algorithm
. ~ 2 g 4 g
1 function CL-AMP (S, k, 07)

2 o — il // k-dimensional

3 T+ 0 // k-dimensional
~ o

4 (C,Z,(a})1<j<m) ¢ Init (8,0, a,7)

5 repeat

6 Update (a, 7) using eqs. (6.30) to (6.32), Z and (q})1<j<pm,
7 (C7Z7(q]z‘>1§j§m) «— SHyGAMP(§7cvqgaaaT)

8 until convergence

9 return estimated centroids C

6.4 EXPERIMENTAL RESULTS

We perform extensive empirical simulations, first on synthetic data in
Section 6.4.1, and on the MNIST dataset in Section 6.4.2.

Despite all the modeling possibilities for the prior covered by (6.17),
we will use in the experiments the non-informative prior p,(c) o 1 for
every i € [1,d], which already gives good results. Although we justi-
fied the derivation above using a true prior distribution, the obtained
algorithm can easily be adapted to the case of a non-informative prior.

6.4.1 Synthetic data

In this subsection, we generate data according to the Gaussian mix-
ture model described at Equation (4.5), where the intra-variance is
computed using a separation factor fixed to s = 2.5.

Frequency distribution In the experiments below, we use the “adapted
radius” distribution AR(0?) suggested in [4] and briefly discussed in
Section 4.2.6. It indeed gives slightly better results in comparison with
a Gaussian frequency distribution, and helps with numerical issues.

The kernel variance®! o2 for the figures below is chosen following the 2! Compared to [4], we normalized the
heuristic provided in (4.14). distribution so that E,_g(,2)(l¢[3) =
1/02.

Sketch size We fix the kernel scale, the dimension d and number
of clusters k, and look at the impact of the sketch size on clustering
performance. We recall that recovery is expected to succeed for m =
Q(kd), hence we use m/(kd) as parametrization of the horizontal axis.

132

Results for (k = 10,d = 10) and (k = 20,d
Figure 6.2.

60) are presented in

d=10, k=10

70

—@— CLAMP

--@-- CLOMPR

—@— CLAMP
--@3-- CLOMPR

m/(kd)

We observe that CL-AMP is uniformly better than CL-OMPR. As
previously observed [2], CL-OMPR succeeds provided that roughly
m > 5kd or m > 10kd depending on the dimension, while CL-AMP
works very well down to m = 2kd, and even a bit below. Note that
this behavior is coherent with the observations on AMP and OMP in
the traditional compressive sensing setting, see for instance [249, Fig.
8-10]. We also note that both methods perform better than k-means
for a large enough sketch size. The performance of k-means could
certainly be improved by increasing the number of repetitions and
maximum number of iterations®?, but still suggests that the algorithm
suffers from spurious local minima and that using a large number of
random initializations is needed to obtain good performances, whereas
compressive clustering is much more stable in comparison.

d=10
L6 —@— m= 2kd, CLAMP
10 1o m= 2kd, CLOMPR
1015 U * m= 5kd, CLAMP
¢ - m=5kd, CLOMPR |8
1044 H—6— m=10kd, CLAMP
m=10kd, CLOMPR
1.3 Y
=10 P
10142 -
101A1 -
1010 18

m/(kd)

Figure 6.2: Clustering error versus
sketch size. Frequencies drawn accord-
ing to the “adapted radius” distribution,
n = 10 points drawn according to the
Gaussian mixture model (4.5) with sep-
aration s = 2.5. Medians and standard
deviation (ribbon) over 100 trials.

**Here and everywhere below unless
otherwise specified, we use k-means++
with 3 trials.

Number of clusters We now consider three different sketch sizes
(namely m = 2kd, 5kd, 10kd), and look at the error as a function of the
number of clusters k for d = 10 and d = 60.

Both compressive methods have increasing errors when k grows,
which probably comes from the lack of separation between clusters.

Figure 6.3 shows that CL-AMP yields in almost all settings lower errors

10'140 1015 10'2.(1

k

Figure 6.3: Clustering error versus num-
ber of clusters k. Frequencies drawn ac-
cording to the “adapted radius” distribu-
tion, n = 10* points drawn according to
the Gaussian mixture model (4.5) with
separation s = 2.5. Medians over 100
trials for smaller values of k, and over
a few trials for larger values of k (recall
CL-OMPR scales in O(k?), which makes
it impractical for extensive simulations).

than CL-OMPR. This holds especially for d = 60, where CL-OMPR
performs poorly, and/or when m = 2kd, confirming previous obser-
vations regarding the sketch size. It should be noted that the error
of k-means does not increase too much with k& in comparison with
both CL-OMPR and CL-AMP. This suggest that the estimation of the
kernel variance could also be problematic for values of k close to 100.
The range of kernel variances in which compressive clustering is ex-
pected to perform well indeed becomes much thinner in this regime as
observed in Section 4.2.5.

6.4.2 Real datasets

We now provide some empirical results on the MNIST dataset of hand-
written digits [227], using the same spectral features as described in
Section 5.3.2, and on the FMA dataset [211].

MNIST As discussed in Chapter 4, learning the optimal kernel vari-
ance from the dataset is necessary for practical applications. Yet, our
goal here is mostly to compare CL-OMPR and CL-AMP algorithms,
and both methods suffer from this problem. As a consequence, and
in order to avoid drawing wrong conclusions because of a possibly
inaccurate estimation of the optimal kernel variance, we will show
the errors as functions of the kernel variance. Results are provided
in Figure 6.4 for m = 2kd and m = 10kd in terms of both clustering
error and adjusted rand index (ARI). The latter measures the similar-
ity of the recovered clustering with the ground truth classes, and is
computed so that a random clustering would have and ARI of zero in
expectation. We consider the standard dataset comprising n = 7 x 10*
images, as well as a larger collection of n = 10° samples including
distorted variants of these images generated using infiMNIST [228].

Interestingly, for the original dataset (n = 7 x 10*) CL-OMPR seems
here to perform well on a larger range of kernel variances than CL-
AMP, contrarily to what has been observed on synthetic data. CL-AMP
however has slightly lower error at the optimal kernel variance, and
almost always a smaller variance. In terms of adjusted rand index, CL-
AMP is much better than CL-OMPR for both sketch sizes, with a clear
gap between the two methods. Similar conclusions can be drawn for
the extended dataset in terms of MSE, however both methods perform
well in this case in terms of ARI, with a slightly reduced variance in
favor of CL-AMP.

FMA dataset We also report in Figure 6.5 some results obtained on
the “FMA” dataset®3 of audio features [211].

Dimension is d = 518 for this dataset, and the number of clusters as
been arbitrarily chosen to k = 20. Data is centered and standardized,
as features of very different natures are present in the collection. No
ground truth classification can be used here, so we simply report the
mean squared error as a function of the kernel scale for both CL-AMP
and CL-OMPR. Both methods reach similar error levels, however none

2 cf.

fma

133

https://github.com/mdeff/

https://github.com/mdeff/fma
https://github.com/mdeff/fma

134

1.00

0.75
= 0.50
0.25

0.00

0.8

0.6

MSE

0.75

0.50

MSE

0.25

0.00

-0.25

0.8

0.6

MSE

0.0

MNIST (n = 7x10"%%), m = 2kd

MNIST (n = 7x107%%), m = 2kd

—o— CLAMP .01
b --B-- CLOMPR o9 |
0.8 |-
&
0.7 I
o7
0.6 |
[& —0— CLAMP \
05 --B-- CLOMPR &
i o4 |77 k-means
1 : 1 : 1 : 1 : I : 1 :
1071.5 1071.0 1070.5 100‘0 100‘5 101.0 10—1.5 10—1.0 10—0.5 100‘0 100‘5 101.0
oy on
MNIST (n = 7x107%), m = 10kd MNIST (n = 7x107%), m = 10kd
i —o— CLAMP i
--@-- CLOMPR 0-95 SRECoouts MR
. 0.90
0.85 I
b 5
- < 080 “\
0.75 [o
—0— CLAMP
i o7or --@-- CLOMPR
S50 580 Bp-p-pg-pp-asti 0D A0 0 _ o65F |77 k-means
1 : 1 : 1 : 1 : I : 1 :
10-L5 10710 1005 1000 100-5 1010 10715 10-L0 1905 1000 1005 1010
oy on
MNIST (n = 1x107%), m = 2kd MNIST (n = 1x107%), m = 2kd
11
d —0— CLAMP
L Ty --@-- CLOMPR
B —
~
| <
« —@— CLAMP '\\
B 06| --@-- CLOMPR =
————— k-means
| } | } | } 0.5 1 } I I | }
1071.5 1071.0 1070.5 100‘0 100‘5 101.0 10—1.5 10—1.0 10—0.5 100‘0 100‘5 101.0
oy on
MNIST (n = 1x107%), m = 10kd MNIST (n = 1x107%), m = 10kd
i —0— CLAMP 100 F
--@-- CLOMPR a-g-g-a-g----
- - 0.95 [%
B :'- ., 0.90 [~
¥ < 0.85 |
i 0.80 - —o— CLAMP
--@-- CLOMPR
| -s-s-g-e-o-g-c-0-0-0-0--0-0-0-0 08 B BB 8- —- o7s | k
-means
L t L t L t L t L } L t
1071.5 1071.0 1070.5 100‘0 100‘5 101.0 10715 10710 10705 100.0 100.5 101.0
oy on

Figure 6.4: Clustering error and adjusted rand index (ARI) versus kernel scale o2. Frequencies drawn according to the “adapted radius”
distribution. Medians and standard deviation (ribbon) over 100 trials. k-means is run with three trials and kmeans++ initialization.

10350 | —@— CKM, CLAMP
0 CKM, CLOMPR
DDDDDDD ————— k-means
10325 |
[Sa]
n
= 10300 L
10275 |
owoo
D—%-U-U-U-D 0-0-o-o-o-a-0-0-0-0-0-0-8-0-00-0
I [-
102-00 10225 10250 10275 103-00
0_2

of the two matches k-means results. CL-OMPR seems however to
performs well over a larger range of kernel variances in comparison
with CL-AMP. This tends to confirm that CL-AMP is more sensitive to
the tuning of the different parameters.

6.5 PERSPECTIVES

We introduced in this chapter a new method to recover cluster centers
from a sketch of averaged random Fourier features. Our algorithm is
based on the generic simplified hybrid generalized approximate mes-
sage passing algorithm (SHyGAMP), and derived under a Gaussian
mixture data generation model. It also relies on several approximations
of the mean and covariance posteriors which are specific to our model.

The proposed method compares favourably to the continuous ver-
sion of orthogonal matching pursuit (CL-OMPR), both on synthetic
data and spectral features computed on the MNIST dataset, and has a
lower computational complexity. We thus advise using CL-AMP rather
than CL-OMPR in general, especially in settings where the number of
clusters k to recover is large.

It should be noted, however, that CL-OMPR is more generic — it
can for instance be used for Gaussian modeling using the same sketch,
which would be much more difficult with the proposed method —, and
still sometimes yields lower errors than CL-AMP on datasets whose
distributions differ largely from a Gaussian mixture model. Further-
more, despite the promising performance which have been reported,
we stress that tuning CL-AMP is not straightforward due to all the
numerical estimations discussed in section 6.3.2, and thus this method
might need more adjustments in different settings.

We do not report precise runtimes as it is difficult to fairly com-
pare both methods, and one would need more engineering on the
implementations of both algorithm to get meaningful results. With the
settings that we have chosen, CL-AMP seems in general to be more
efficient than CL-OMPR, but it should be noted that the maximum
number of iterations in CL-AMP is arbitrarily chosen and has a signifi-
cant impact on the complexity. In particular, when m ~ kd CL-OMPR
scales with k in ©(k®) while CL-AMP only in ©(k?), but the former has
a fixed number of iterations while it is not easy to characterize how

135

Figure 6.5: Clustering error (medians
over 10 trials) versus kernel scale o2 on
the (centered and standardized) FMA
dataset. Using m = 10kd, dense Gaus-
sian frequencies.

136

the maximum number of iterations in CL-AMP should grow with k
— and measuring numerically the convergence alone is not sufficient as
a stopping criteria.

Also, we quickly tried with success using the fast transforms from
Chapter 5 with CL-AMP. We do not compare the two methods on this
criterion as they both benefit from the speedup in the same manner.

Part IV

COMPRESSIVE LEARNING WITH

Privacy GUARANTEES

We provide an introduction to differential privacy in Chapter 7,
introduce the private sketching mechanisms in Chapter 8, and assess
their performance in terms of learning quality in Chapter 9.

Chapter 7
Introduction to Differential Privacy
and Related Work

N ADDITION to its efficient use of computational resources, sketching
is a promising tool for privacy-preserving machine learning. In nu-
merous applications, such as when working with medical records,

online surveys, or measurements coming from personal devices, data
samples contain sensitive personal information and data providers
ask that individuals” contributions to the dataset remain private, i.e.
not publicly discoverable. Learning from such data collections while
protecting the privacy of individual contributors has become a crucial
challenge. Indeed, even releasing intermediate quantities computed
from a collection of people’s records — e.g. a machine learning model
or aggregate statistics — rather than the raw data can already compro-
mise the privacy of these users, even when aggregation is performed
over millions of data providers [258].

We will explain in Chapter 8 how the sketching mechanism (1.10)
can be adapted to ensure privacy, however we need for that to define
formally what is meant by “privacy preservation”. Differential privacy
(DP) was proposed as a strong definition of privacy by Dwork et
al. [259], and has since been studied and used extensively in research
and industry [260, 261].

The goal of this chapter is thus to introduce this notion, and to
explain the standard techniques which can be used to make an existing
algorithm differentially private.

We give in Section 7.2 a brief introduction to DP, and also detail the
assumptions made on the attacker (the attack model), which have a
direct impact on the kind of guarantees that can be achieved. We then
introduce in Section 7.3 the Laplace and Gaussian mechanisms, which
are two standard methods to obtain differential privacy by adding
carefully calibrated noise on the quantity to release. The differentially
private sketching mechanism which will be introduced later in Chap-
ter 8 relies on these ideas. A few methods achieving differential privacy
via other tools are presented in Section 7.4, with a focus on the k-means,
Gaussian modeling and PCA problems, as we will only tackle these
three tasks with our compressive approach.

Contents

7.1
7.2

73

7-4

Attack model 140

Definition and properties 140

7.2.1 Neighboring relation | 7.2.2 Com-
position properties | 7.2.3 Alternative
privacy definitions

Standard perturbation mechanisms
for differential privacy 143

7.3.1 The Laplace mechanism | 7.3.2
Approximate Differential Privacy and
the Gaussian Mechanism

Private methods for the considered
learning tasks: related work 147

140

7.1 ATTACK MODEL

Before providing the definition of differential privacy, it is important to
specify an attack model. We consider a trusted curator model, where a
trusted entity has access to the data, and publishes a noisy summary —
in our case, a sketch of the data. The adversary is non-interactive, in
that they have full access to the sketch of the dataset, or to sketches of
disjoint subsets of the dataset if the latter is distributed across multiple
devices (Figure 7.1), but cannot query the curator(s) for more data.
On the figure, z(X) denotes the “private” sketch of the data, whose
definition is postponed to later.

n

sketching

«— Private ~
— Attacker

The feature map ® and the matrix of frequencies €2 used for sketch-
ing are assumed to be publicly known, in contrast to some approaches
where random projection matrices are used as encryption keys [262].
This is essential for analysts, who need to know the feature map in
order to learn from the sketch. The model also covers the case where
analysts may be adversaries. We assume that each user contributes
exactly one record to the total dataset, albeit our results can be ex-
tended to allow for multiple records per user. We do not make any
assumptions on the background knowledge available to the adversary,
nor on the operations that they are able to make. Hence, our privacy
guarantees are robust to extreme cases where the adversary knows the
entire database apart from one user, and has infinite computing power.

7.2 DEFINITION AND PROPERTIES

We denote D,, = X" the set of (ordered) collections of n learning
examples in the data domain X, and D = U, D,,. Hence datasets
are seen depending on the context" either as matrices (as done in the
previous chapters) or tuples of data samples — which we denote e.g.
X = (x4, ..., X,,) — and | X]| denotes the size of the tuple, i.e. the number
of samples in the dataset. We consider for now X = R?, but we will
restrict ourselves to the unit ball for the PCA application below. Note
that we work with ordered datasets for technical reasons, but this order

A
X'1 i Compressive
Device 1 Learning
% Private
sketching Cr
Learned Model
Xr Device L z(X,)

Figure 7.1: Attack model. The dataset
is distributed between L devices, each
computing and releasing publicly a sub-
sampled sketch z(X;).

* This is just for convenience, and there
is naturally a bijection between the two
spaces.

does not matter from a learning perspective.

Randomness is an old tool for introducing uncertainty” when us-
ing sensitive information, e.g. implemented as randomized response
surveys [263]. Differential privacy [259] provides a formal definition
of the privacy guarantees offered by a randomized data release mech-
anism. Intuitively, a mechanism R provides differential privacy if its
output does not depend significantly on the presence of any one user
in the database, hence hiding this presence from an adversary.

Definition 7.1 (Differential privacy [259]): The randomized
mechanism R : D — Z achieves e-differential privacy (noted e-
DP) iff for any measurable set? Sof Zand X, Y € Ds.t. X ~Y
for some neighboring relation ~ (see below):

PR(X) € S] < exp(e) P[R(Y) € S]. (7.1)

The parameter ¢ > 0 is called the privacy budget.

The smaller ¢, the closer the output distributions for two neighboring
datasets are, and the stronger the privacy guarantee. Equivalently,
differential privacy can be defined through the notion of privacy loss of
a randomized mechanism. This is particularly useful when proving
that a mechanism is differentially private.

Definition 7.2 (Privacy loss [264]): Let R be a randomized al-
gorithm taking values in Z. If R admits a density pgx, over Z
for each input X, the privacy loss function is defined by

Prx) (z))

Lp(z,X,Y) =lo
i 4 (pR(Y) (z)

The random mechanism R achieves e-differential privacy iff

sup Lip(z,X,Y) <e.
zEZ
X,YeD: X~Y

Intuitively, small values of the privacy loss L of R for some pair
X,Y characterize regions of the co-domain where output random
variables R(X) and R(Y) have “close” distributions.

7.2.1 Neighboring relation

The neighboring relation ~ in Definition 7.1 defines the practical guar-
antees that differential privacy offers. A common definition, called
unbounded differential privacy (UDP), states that two datasets are
neighbors if they differ by the addition or deletion of exactly one sam-
ple. From definition 7.1, this implies that the output of an algorithm
that satisfies unbounded DP does not significantly depend on the pres-
ence of any one user in the dataset. An alternative is bounded DP
(BDP), which defines two datasets as neighbors if and only if they
differ by exactly one record by replacement.

141

? Sometimes referred to as “privacy by
plausible deniability”.

3. The codomain Z is implicitly en-
dowed with a o-algebra. Note that the
choice of the o-algebra does have an im-
pact on the privacy definition. In the fol-
lowing, our sketching mechanisms take
valuesin Z = R™ or Z = C™, and we al-
ways use the Borel o-algebra to get strong
privacy guarantees.

142

Werecall that [1,n] = {1, ...,n}, and we also denote S,, the permuta-

tion group of {1, ..., n} and o(X) a permuted collection: o((xy, ..., X,,)) =

(X(,(l), . Xg<n)) foranyo e S,,.

Definition 7.3: An algorithm provides e-unbounded DP (UDP)
iff it provides e-DP for the “removal” neighborhood relation ~,

defined as
! IX|=[Y][=1
X~Y & v
do e S\X\ s.t. U(X) ~ Y7
where, assuming w.l.o.g. |X| = [Y|+1 = n > 2, we define

(X1, .y X,,) ~ (Y1, Yn)) < (Vi e [1,n—1], x; = y,) and
x,, is arbitrary).

Definition 7.4: An algorithm provides e-bounded DP (BDP) iff
it provides -DP for the “replacement” neighborhood relation ~:
XAY < |X|=|Y|and 30,0, € Sk sit. 04 (X) & 0,5(Y),

where ((x,,...,%,,) & (y1, .-, ¥,)) < (Vi e [1,n—1],x;, = y, and
X,,, Y, are arbitrary).

We assumed |X| = |Y| + 1 in the definition for succinctness only,
but the relation ~ is symmetric. The key practical difference between
the two definitions is that BDP assumes that the size of the dataset is
not a sensitive value and can be published freely*.

Unbounded differential privacy is a stronger definition, as an e-UDP
algorithm is necessarily> 2e-BDP, while the reverse is not necessarily
true. This 2¢ bound might however not be tight. In the following,
we will mainly consider the unbounded DP settings, which is some-

times more tricky. Most results will however also be provided for
bounded DP.

7.2.2 Composition properties

An important property of differential privacy is composition: using
several differentially private algorithms on the same dataset results in
similar guarantees, but with a total privacy budget equal to the sum
of the budgets of the individual algorithms. Hence, one can design
a complex DP algorithm by splitting its privacy budget € between
different simpler routines.

Lemma 7.5 (Sequential composition [265, Theorem 3])

Let (R;),,<, be acollection of DP mechanisms on the same domain
with respective privacy budgets (¢;);<;<,. Then

R:X b (Ry(X),..., R,(X))

provides (37, ;)-DP.

i=1"1

+Indeed, X ® Y implies |X| = |Y]|. We
will come back on this matter a bit later.

5Using the composition lemmas pre-
sented below. Indeed not thatif X 2 Y,
then X can be obtained from Y by re-
moving an element and adding a new
one.

143

This holds for both bounded and unbounded DP. Parallel composi-
tion can also be performed; the following lemma however holds only
in the unbounded case.

Lemma 7.6 (Parallel composition [265, Theorem 4])

Let (R;);,<, be a collection of independent -UDP algorithms on
the same domain D, and D, be disjoint subsets of D. Then

R: X+ (R (XNDy),...,R.(XND,))

provides e-UDP, where (x4, ..., X,,) N D; denotes the subtuple with
original ordering of the samples (x;);,-,, thatare in D,.

These lemmas hold only when the R, are differentially private ac-
cording to the same neighboring relation between datasets. Note also
that privacy is robust to post-processing: if a mechanism R is e-DP,
then f(R(-)) is also e-DP for any function f. Thus Lemma 7.6 implies
in particular that in a distributed setting, each data holder can compute
and release an -DP synopsis of its local data (e.g. a noisy sketch), and
merging these quantities will lead to a global synopsis which is also
e-DP with respect to the whole dataset.

7.2.3 Alternative privacy definitions

Many alternative definitions of privacy have been proposed in the
literature [266]. Traditional statistical disclosure control metrics, such
as k-anonymity [267], define anonymity as a property of the data,
e.g. requiring that each user is indistinguishable from k& — 1 others.
However, anonymizing large-scale high-dimensional data (such as, e.g.,
mobility datasets) was shown to be hard, due to the high uniqueness
of users in such datasets [268]. Researchers have proposed to make
privacy a property of the algorithm, enforcing for instance that the
mutual information leakage is bounded [269]. Differential privacy
is the most popular of such definitions, as it considers a worst-case
adversary, and is hence ““future-proof’”: no future release of auxiliary
information can break the privacy guarantees. Connections between
differential privacy and other information-theoretic definitions have
also been investigated [270].

7.3 STANDARD PERTURBATION MECHANISMS FOR DIF-
FERENTIAL PRIVACY

7.3.1 The Laplace mechanism

In this section, we describe the Laplace mechanism [259], a very com-
mon and simple mechanism to release privately a function f computed

over sensitive values. This mechanism adds Laplace noise to the func- ®We recall that the density of the cen-

tion’s output, whose scale ensures differential privacy. In the following, tered Laplace p rObablihty diStr‘gTuﬁon of
s s . ter b i = —=).
L(b) denotes the centered Laplace distribution® of parameter b. parametero1s e o EXP(b)

144

Definition 7.7 (Complex Laplace distribution): A random vari-
able z follows a centered complex Laplace distribution of param-
eter b (denoted z ~ LE(b)) iff its real and imaginary parts follow
independently a real Laplace distribution of parameter b. In that
case, z admits a density p,(z) x exp(—(|Rz| + |Jz|)/b) and has
variance o2 = E[|z|?] = 4b°.

Definition 7.8 (Laplace mechanism): For any function f : D —
R™ (resp. C™), we define the Laplace mechanism with param-
eter b € R as the random mechanism X +— f(X) + & where

(&) 1<icm ~L(D) (resp. Ec(b))-

The Laplace mechanism provides differential privacy if the scale b
of the noise is chosen carefully. This scale depends on the notion
of sensitivity, which measures the maximum variation of a function
between two neighboring datasets.

Definition 7.9 (l;-sensitivity): The [;-sensitivity of a function
f+D — R™ for a neighborhood relation ~ is defined as

Ay = sup FX) = f(Y)]L- (7-2)

X, YeD: X~Y

This definition extends to complex-valued functions using the
canonical isomorphism between C™ and IR*™.

Throughout the paper, we will use superscripts A} and Al to denote
sensitivities computed respectively w.r.t. the UDP and BDP neighbor-
ing relations. Dwork et. al [271] proved that the Laplace mechanism
provides e-differential privacy for the noise level b = A, (f)/e. We pro-
pose below a straightforward extension of this result for the complex
setting. Although only an upper bound on the sensitivity is required in
order to prove that a mechanism is differentially private, we will also
provide sharp bounds when possible, hence the notion of “optimal
privacy level”.

Let f : D — R™ or C™. The Laplace mechanism applied on fis
differentially private with optimal privacy budget ¢* = A, (f)/b.
Alternatively for € > 0, the lowest noise level yielding e-differential
privacy is given by b* = A;(f)/e. This holds for both bounded
and unbounded DP, provided that the sensitivities are computed
according to the relevant neighborhood relation.

Proof: Let X,Y € D be such that X ~ Y. Let px and p denote
the probability densities of the Laplace mechanism applied on f
for datasets X and Y. In the real case, the privacy loss function

takes the form

In the complex case, the proof is similar but using the density of
a complex Laplace variable (Definition 7.7), and the definition of
l,-sensitivity in the complex case.

: px(z) 1

P LX) —log(22 = 11%) - 2l ~ 1700 -2l
- py(2) b

: Hence:

* supLy(z,X,Y)=0b" sup Zsup |f(Y); — 2] = [f(X); — 2]
. zeR™ X,YeD j—1 s;eR

T X, YeD st X~Y

st X~Y

: 0 o WXL AW

" = sup 7 ==

] X, YeD

: s.t. X~Y

Note that the function f : X + |X| has UDP/BDP sensitivities
AJ(f) = 1and A} (f) = 0, as all neighboring datasets have the same
size for BDP. Releasing n publicly is therefore -BDP for any value of ,
but this is not the case with UDP. This confirms the intuition that UDP
treats the dataset size as sensitive, while BDP does not.

7.3.2 Approximate Differential Privacy and the Gaus-
sian Mechanism

Differential privacy is a very strong guarantee, and for many real-world
tasks it can lead to severe degradations of the algorithms performance
(utility) for small privacy budgets. For this reason, many relaxations of
DP have been introduced, the most prominent of which is approximate
differential privacy, also commonly called (¢, §)-DP [271].

Definition 7.11 (Approximate differential privacy [271]): The
randomized mechanism R : X — Z achieves (¢, §)-approximate
differential privacy (noted (¢, §)-DP) for ¢ > 0, 6 > 0 iff for any
measurable set S of Z,and any X,Y € D s.t. X ~Y for some
neighboring relation:

P[R(X) € §] < exp(e) - P[R(Y) € 8] + 6. (7.3)

The most common mechanism to achieve (¢, §)-DP is the Gaussian
mechanism, adding Gaussian noise to the output of a function. As for
the Laplace mechanism, we here consider potentially complex-valued
outputs, and denote z ~ N€(0,5%) a random variable whose real and
imaginary component are independently identically distributed as
Rz, Tz ~ N(0,0%) (note that the variance of z then reads o2 = 20?).

Definition 7.12 (Gaussian Mechanism): For any function f :
D — R™ (resp. C™), we define the Gaussian mechanism with
parameter o as the random mechanism X — f(X) + £ where

145

(*) The inequality < follows from the tri-
angle inequality, and z; = f(Y); shows
the equality.

146

(€)1<jem 8 N(0,02) (resp. N€(0,02)).

The advantage of this DP relaxation is that the noise standard devia-
tion needed for (¢, §)-DP scales not with the [, but with the [, sensitivity
of f, defined just below, which can be significantly smaller for many
functions, including our sketching operator.

Definition 7.13 (/,-sensitivity): The I,-sensitivity of a function
f + D — R™ for a neighborhood relation ~ is defined as
Ay(f) = Supyx yep: xy I/ (X) = f(Y)[l,- This definition extends
to complex-valued functions using the canonical isomorphism
between C™ and R*™.

The “classical” noise calibration for the (real) Gaussian mechanism
comes from [264, Appendix A], which shows that, assuming ¢ <
1, a standard deviation o > (2In(1.25/8))"°A,(f)/e is sufficient to
guarantee (e, §)-DP. This bound is commonly used but suboptimal,
especially in the high privacy regime (i.e. small €), and restricted to
¢ < 1. The calibration of the required noise parameter ¢ has recently
been carefully tightened by Balle et al. [272], which is the mechanism
we will use in this work?.

Theorem 7.14 (Analytical Gaussian mechanism [272, Th. 9])

Foreach e, d > 0, the lowest noise level o* such that the (real) Gaus-

As(f)
2 4

where a(e, §) is described in [272] and can be computed with a

sian mechanism provides (¢, §)-DP is given by 0* = a(e, 0)
numerical algorithmic procedure.

The result holds for complex-valued feature maps as well using
the canonical isomorphism between C™ and R?™, as applying the
complex Gaussian mechanism on a complex-valued ®(-) is equivalent
to applying the real Gaussian mechanism to [R®(-); IJ®(-)], given that
RO (): 3D ()], = [0

Note that simple composition theorems also exist for approximate
differential privacy similarly to Lemma 7.5. We provide here only a
result on sequential composition for succinctness, but results on parallel
composition can be found in the literature as well.

Lemma 7.15 (Sequential composition [264, Theorem 3.16])

Let (R;),<;<, be a collection of (¢;, §;)-DP mechanisms on the same

1771

domain. Then
R: X+ (R(X),...,R.(X))
provides (37 &;, > 1, 0;)-DP.

i=1Y

We now explain how the privacy definitions introduced in this
section can be satisfied with the sketching framework.

7 An implementation can be found at
https://github.
com/BorjaBalle/
analytic-gaussian-mechanism.

https://github.com/BorjaBalle/analytic-gaussian-mechanism
https://github.com/BorjaBalle/analytic-gaussian-mechanism
https://github.com/BorjaBalle/analytic-gaussian-mechanism

7.4 PRIVATE METHODS FOR THE CONSIDERED LEARN-
ING TASKS: RELATED WORK

We propose in this section to briefly review the most common meth-
0ds® that have been introduced in the literature to achieve differential
privacy. We focus on the three learning tasks which will be addressed
using private sketches in the next chapter, which are Gaussian mixture
modeling (GMM), PCA and k-means clustering. The two latter have
already received a lot of attention in the differential privacy literature,
while the former has been less studied. This overview is not exhaustive,
and we refer the reader to [273] for an up-to-date survey of existing
methods for private machine learning.

Addition of noise is the most common way to achieve differential
privacy, whether it is on the intermediate steps of an iterative algo-
rithm or directly on the output. Private variants of standard iterative
methods include DPLloyd for k-means [274], and variants with im-
proved convergence guarantees [275]. The popular k-means++ seed-
ing method has also been generalized to a private framework [276].
For Gaussian modeling, DP-GMM [277] and DP-EM [278] have been
proposed. Note that for iterative algorithms, the privacy budget needs
to be split between iterations, de facto limiting the total number of
iterates, which becomes a hyper-parameter. The approach presented in
the next chapter, which makes use of the Laplace and Gaussian mech-
anisms to release noisy sketches, does not suffer from this drawback
since the sketch is released at once. Moreover, the same sketch can be
used? to run the learning algorithm multiple times with e.g. different
initializations.

Releasing a private synopsis of the data (similarly to our sketch)
rather than directly a noisy solution has already been studied as well.
EUGKM [279, 280] suggests for instance to use noisy histograms for
clustering (but this method is by nature limited to small dimensions),
and private coresets'® have been investigated by Feldman et al. [281,
282]. For PCA, noise can be added directly on the covariance ma-
trix [283].

The exponential mechanism is another standard noise-additive ap-
proach for privacy. A random perturbation is drawn according to
a distribution calibrated using a user-defined quality measure, and
added to the output. It has been used with success for PCA, perturbing
either the covariance [284, 285, 286] or directly the eigenvectors of the
covariance [287, 288], and with genetic algorithms for k-means [289].
Such algorithms depend strongly on the quality measure of the output,
which must be chosen carefully. Our sketch-based approach is in con-
trast more generic: the same sketch allows to solve different tasks such
as clustering and GMM fitting, and it can easily be extended to new
sketches in the future. Alternatively, our mechanism can be seen as
a straightforward instantiation of the exponential mechanism, where
the output (the sketch) is carefully designed so that is makes sense to
simply use the [, or [, norms as quality measures.

Our sketching mechanism makes use of random projections, which

147

8We refer here to methods which ei-
ther make multiple applications of the
Laplace and/or Gaussian mechanisms,
or rely on different tools.

9 To some extent, as will be discussed in
Chapter 9.

' See Section 3.3.1 for an introduction to
corsets.

148

have proven to be very useful to solve efficiently large-scale problems,
and induce as well a controlled loss of information which can be lever-
aged to derive privacy guarantees. Balcan et al. investigated the large-
scale high-dimensional clustering setting with an approach based on
Johnson-Lindenstrauss dimensionality reduction [290]. Many other
embeddings based on random projections have been proposed, see
e.g. [291]. Linear compression of the number of samples (rather than
reducing the dimension) has been considered [292] but is less scalable.
Random algorithms have also been used for PCA and, more generally,
for low-rank factorization [293, 294, 295]. Note however that the fea-
tures resulting from the random projection undergo in our setting a
nonlinear transformation and are averaged; they thus differ a lot from
what is done in these works, although they share this common idea.
Sketches based on LSH™ kernels have also recently been adapted to
the private setting [296], and applied to various learning tasks such as
classification or linear regression.

Private empirical risk minimization [297, 298] has emerged as a
generic way to design private learning algorithms, but it relies on
specific assumptions' on the loss function which defines the learning
task, and still relies on multiple passes over the whole dataset.

Closer to our work, Balog et al. recently proposed to release kernel
mean embeddings [299], either as sets of synthetic data points in the
input space or using feature maps, similarly to our method. However,
to the best of our knowledge, the impact of privacy on the quality of
learning in such methods has not been studied in the literature. Harder
et al. also considered using kernel mean embeddings, however in the
perspective of generating data [300].

" cf. Chapter 3.

2 e.g. convexity, which does not hold for
PCA, GMM modeling and k-means.

Chapter 8
Differentially private sketching

Note A first version of this work with privacy upper-bounds and
experimental results was originally published [29] and extended
to the quantized setting [28]. Sharp bounds and results on the
subsampling mechanism have been submitted to Information and
Inference and are still under review [27].

E INTRODUCED in Chapter 7 the definition of differential pri-

vacy, as well as the standard mechanisms which can be used

to satisfy this property. In this chapter, we explain how to

leverage such mechanisms to produce differentially private sketches.
We will see that proving differential privacy, i.e. upper-bounding
the privacy loss, can easily be done as the considered feature maps are
bounded on the chosen domains® (Section 8.1). However, proving that
these bounds are sharp is slightly more technical and calls for different
mathematical tools. Then, we introduce in Section 8.2 an alternative
private sketching mechanism which, besides using noise addition to
ensure privacy, also subsamples the features of the individual samples.
This yields a mechanism which, in the extreme case and when using
quantized Fourier features®, only measures one bit of data from each

data sample in the dataset.

Summary of contributions The contributions of this chapter are as
follows:
* We build on compressive learning and define a noisy sketching
mechanism.
= We derive sharp differential privacy guarantees for this mecha-
nism for three unsupervised learning tasks: k-means clustering,
Gaussian mixture modeling and principal components analysis.
* We extend our framework to subsampled sketches, giving the
same privacy guarantees for a lower computational cost.
All the privacy results are summarized at the end of the chapter in
tables 8.1 and 8.2.

8.1 PRIVACY WITH NOISY SKETCHES

Sketching, as proposed in (1.10), is not sufficient per se to ensure the
differential privacy of user contributions, despite the fact that the sketch

Contents

8.1 Privacy with noisy sketches 149
8.1.1 Private Sketching with the Laplace

Mechanism | 8.1.2 Approximate Dif-
ferential Privacy with the Gaussian
Mechanism | 8.1.3 Computation of the
bounds for quadratic features

8.2 A faster mechanism with frequency
subsampling 158
8.2.1 Random Fourier Features | 8.2.2
Compressive principal component anal-
ysis | 8.2.3 An Upper Bound for Ap-
proximate and Bounded Differential
Privacy

* Cf. Definitions 2.5 and 2.6.

? We refer here to the quantization of the
nonlinear function, as explained in Defi-
nition 2.5.

150

itself (which is just at most m <« nd real or complex numbers) can-
not contain much information about each of the n samples x; € R .
In particular, although the vectors (w;)’", are randomly drawn, the
sketching mechanism induced by a given set of such vectors is deter-
ministic. We construct a noisy sketch, based on the Laplacian (resp.
Gaussian) mechanism, that guarantees e-differential privacy (resp.
(e, 0)-differential privacy).

The clean sketch § from (1.10) can be written § = ¥(X)/|X|, where
3(X) £ 37" | ®(x;) denotes the sum of features and |X| the number of
records. Our mechanism adds noise to the numerator and denominator
separately, i.e. releases (X(X) + &, |X]| + ¢) where both &€ and (are
random. Both quantities are thus made private provided that the noise
levels are properly chosen, as discussed in the following subsections.
This also means that we can