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Large-Scale High-Dimensional Clustering with Fast Sketching
Antoine Chatalic (Université de Rennes 1), Rémi Gribonval (Inria Rennes) and Nicolas Keriven (Université de Rennes 1).

Context

x1 x2 x3 · · · xn ẑ = 1
n
∑

Φ(xi) θ
Sketching

Drastic dimensiona
lity reductio

n!

Without using the initial data!

Learning

Dataset X (size d × n) Sketch (size m) Parameters (size p = kd)

How to learn from a
large collection of
high-dimensional
elements?

Multiplications by a large random matrix!
B Scales with the dimension d in Θ(d2)!

Can we reduce this cost?
Can we use a structured matrix?

large d

large n

Framework

Sketching can be used to learn mixture models from large collections (large n) [2]:
1. Sketching phase: the whole dataset is compressed into a single m-dimensional

vector ẑ of random generalized moments ẑ w.r.t. m frequency vectors (ωi)1≤i≤m:
ẑ = 1

n
∑n

i=1 Φ(xi), whereΦ : x 7→ [ e−iωT
1 x, ... , e−iωT

mx ]T. (1)

2. Learning phase: The parameters of the mixture components C are estimated
(using only the sketch) by solving:

C, α ∈ arg minC,α

∥∥∥ẑ −
∑k

i=1 αiΦ(ci)
∥∥∥

2
. (2)

State of the art:
▶ Optimization (2) is solved using the greedy heuristic CL-OMPR (inspired from

orthogonal matching pursuit);
▶ W is a (rescaled) dense Gaussian matrix of size m × d.

▶ Sketching ⇝ compute WTX ⇝ scales in Θ(mdn)
▶ Learning ⇝ compute similar products by W and WT ⇝ Θ(mdk2)!

We propose to replace W by a structured random matrix.

Contribution: sketching with structured matrices

For d = 2q, a ”fast” block B of size d × d an be built with the following structure [1, 4]:

B =

r1

rd

...

Radiuses

H
±1

±1

...

Hadamard

H
±1

±1

...

Hadamard

H
±1

±1

...

Hadamard

(3)

Fast Walsh-Hadamard transform ⇝ matrix-vector products cost Θ(d log2(d)) only!
We build a structured matrix by stacking b such blocks (Bi)i drawn i.i.d. according to (3):

W =

ω1
ω2

...

ωm

=

r1
∥g1∥

rm
∥gm∥

...

g1g2

...

gm
Gaussian

B1

...

Bb
0-padding
if necessary

replace by

Before… Now!

Application: k-means clustering

▶ Input: X = {x1, ... , xn} ⊂ Rd a set of n d-dimensional points.
▶ Output: k centroids C = {c1, ... , ck} ⊂ Rd minimizing the sum of

squared errors:
SSE(X , C) =

∑n
i=1 minj ∥xi − cj∥2 . (4)

We want to learn p = kd parameters ; empirically, it turns out that we
need m ≈ p = kd to get good clustering results.

Summary

▶ KM: k-means (Lloyd’s algorithm).
Time: Θ(ndk); Space: Θ(nd)!

▶ CKM: Compressive k-means.
▶ FCKM: Fast compressive k-means.

Before Now
Algorithm CKM FCKM
Matrix of frequencies Dense Structured
Time: Sketching nkd2 nkd ln(d)

Learning → CL-OMPR k3d2 k3d ln(d)
→ Hierarchical k2 ln(k)d2 k2 ln(k)d ln(d)

Space: W kd2 kd
WTX kdnb kdnb

Experimental validation

Randomly generated data
Implementation: SketchMLbox toolbox.
▶ n = 104, k = 10, d ∈ {8, 16, ... , 512}, metric: ratio of SSE.
▶ (xi)1≤i≤n drawn according to a mixture of k separated Gaussians.
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Figure: SSE ratios as a function of m/kd, and sketching speed-ups for 2 different batch sizes.

Conclusions:
▶ Using fast matrices gives the same clustering quality.
▶ For d not too small, fast transforms give significant speedups.

Clustering quality on the MNIST dataset
Spectral clustering ⇝ d = k = 10 ⇝ no speedup, but what about clustering quality?
Metric: SSE and adjusted Rand index (ARI).
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Figure: SSE (the lower the better) & ARI (the higher the better); m = 1008; 120 exps; R=”replicates”; uniform initialization.

Conclusions:
▶ Using fast transforms gives similar or slightly better results.
▶ Results are more stable using fast transforms ⇝ interesting even for small d.

Hierarchical clustering on Amazon co-purchasing graph

We work on an Amazon co-purchasing network, (n ≈ 3.105 nodes), using spectral and
random features [3]. The clustering quality is measured with modularity.
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Figure: Boxplots of modularity (the higher the better)
and clustering time. Using Xeons E5640, 30 repetitions,
R = 2 for KM, R = 20 for KM+subsampling, m = 10kd.

Conclusions:
▶ The same clustering quality is obtained when using fast transforms.
▶ The hierarchical algorithm is much faster, and achieves similar modularities.

What’s next?

▶ Extend this framework to other learning tasks.
▶ Design more efficient algorithms to solve the optimization problem (2).
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