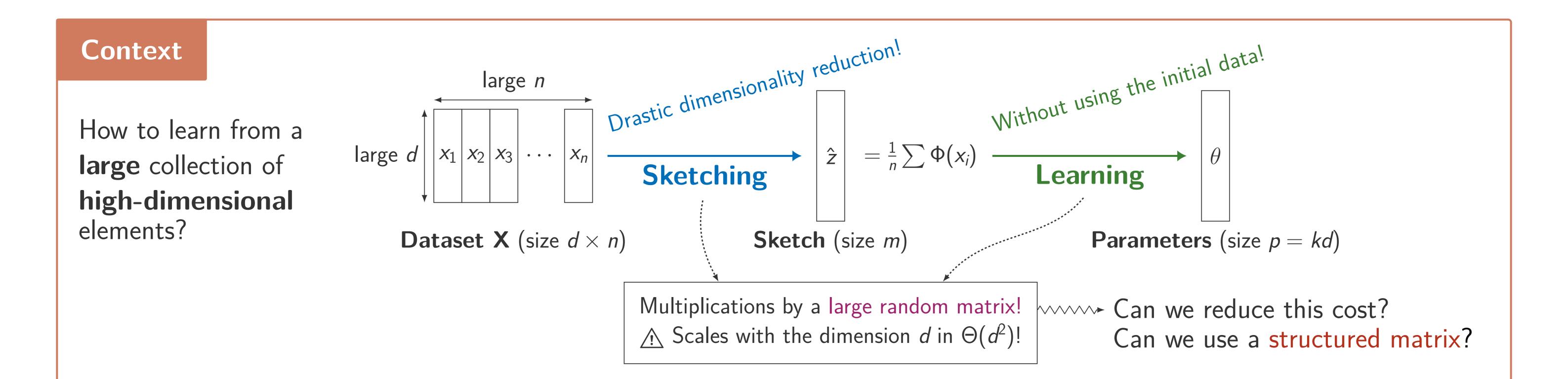
Large-Scale High-Dimensional Clustering with Fast Sketching

Antoine Chatalic (Université de Rennes 1), Rémi Gribonval (Inria Rennes) and Nicolas Keriven (Université de Rennes 1).



Framework

Sketching can be used to learn mixture models from large collections (large n) [2]:

1. Sketching phase: the whole dataset is compressed into a single *m*-dimensional vector \hat{z} of random generalized moments \hat{z} w.r.t. *m* frequency vectors $(\omega_i)_{1 \le i \le m}$:

$$\hat{z} = \frac{1}{n} \sum_{i=1}^{n} \Phi(x_i), \text{ where } \Phi : x \mapsto \left[e^{-i\omega_1^T x}, \dots, e^{-i\omega_m^T x} \right]^T.$$
(1)

2. Learning phase: The parameters of the mixture components C are estimated (using only the sketch) by solving:

$$\mathcal{C}, \alpha \in \arg\min_{\mathcal{C}, \alpha} \left\| \hat{z} - \sum_{i=1}^{k} \alpha_i \Phi(c_i) \right\|_2.$$
(2)

(4)

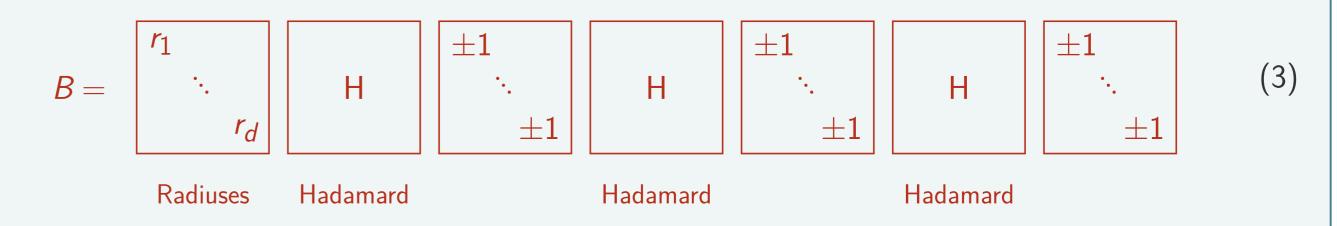
State of the art:

- Optimization (2) is solved using the greedy heuristic CL-OMPR (inspired from orthogonal matching pursuit);
- W is a (rescaled) dense Gaussian matrix of size $m \times d$.
 - Sketching \rightsquigarrow compute $W^T X \rightsquigarrow$ scales in $\Theta(mdn)$
 - Learning \rightsquigarrow compute similar products by W and $W^T \rightsquigarrow \Theta(mdk^2)!$

We propose to replace W by a structured random matrix.

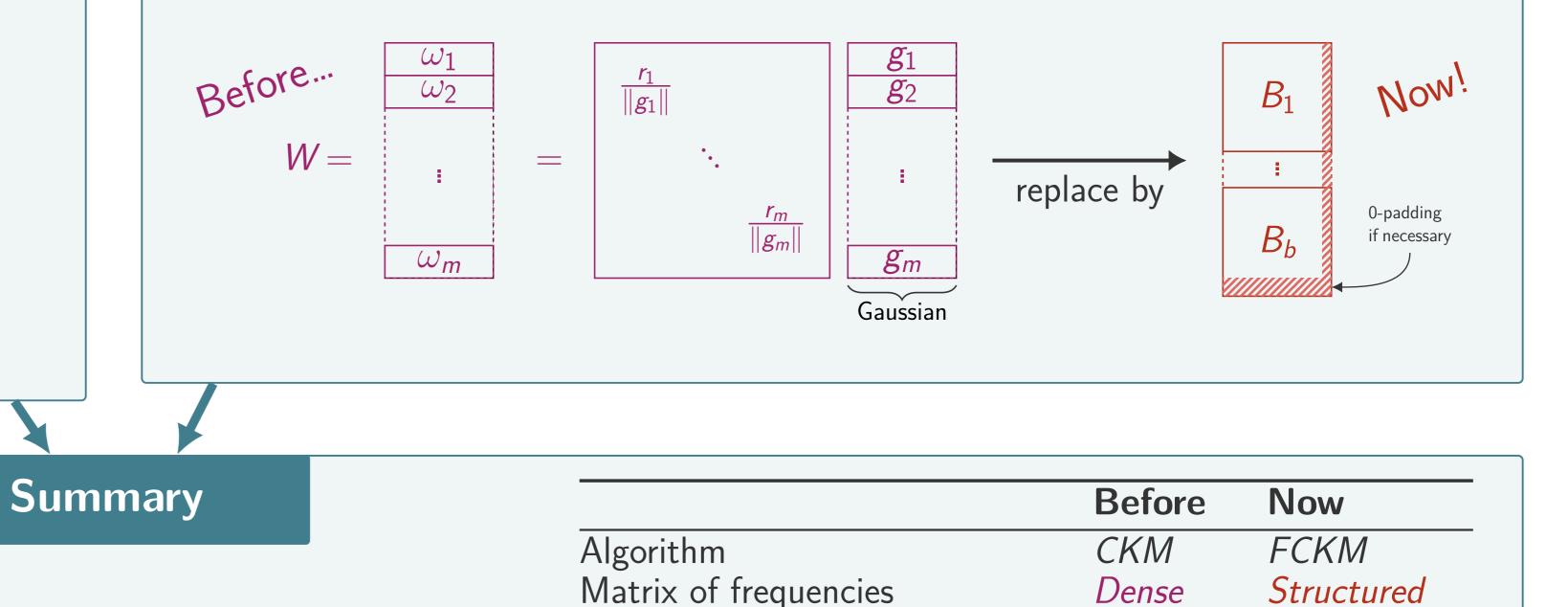
Contribution: sketching with structured matrices

For $d = 2^q$, a "fast" block B of size $d \times d$ an be built with the following structure [1, 4]:



UNIVERSITÉ DE 🖻

Fast Walsh-Hadamard transform \rightsquigarrow matrix-vector products cost $\Theta(d \log_2(d))$ only! We build a structured matrix by stacking *b* such blocks $(B_i)_i$ drawn i.i.d. according to (3):



Application: k-means clustering

▶ Input:
$$\mathcal{X} = \{x_1, ..., x_n\} \subset \mathbb{R}^d$$
 a set of *n d*-dimensional points.

► Output: k centroids C = {c₁, ..., c_k} ⊂ ℝ^d minimizing the sum of squared errors:

$$\mathsf{SSE}(\mathcal{X},\mathcal{C}) = \sum_{i=1}^{n} \min_{j} \|x_i - c_j\|^2.$$

We want to learn p = kd parameters; empirically, it turns out that we need $m \approx p = kd$ to get good clustering results.

KM: k-means (Lloyd's algorithm).	Time: Sketching	nkd ²	$nkd\ln(d)$
Time: $\Theta(ndk)$; Space: $\Theta(nd)$!	$Learning \to CL\text{-}OMPR$	$k^3 d^2$	$k^3 d \ln(d)$
CKM: Compressive k-means.	\rightarrow Hierarchical	$k^2 \ln(k) d^2$	$k^2 \ln(k) d \ln(d)$
► FCKM: Fast compressive k-means.	Space: W	kd ²	kd
	$W^T X$	kdn _b	kdn _b

Experimental validation

Randomly generated data

Implementation: SketchMLbox toolbox.

- ▶ $n = 10^4$, k = 10, $d \in \{8, 16, ..., 512\}$, metric: ratio of SSE.
- $(x_i)_{1 \le i \le n}$ drawn according to a mixture of k separated Gaussians.

0 / 1	I			•	СКМ	/ KM					L2 cache	/				`	/b)
Latio	*	**	* *		FCKN	1 / KM	dn_	batch	size=	=1		2 ba	atch	size=	=100		-
Ш — I SS 1 – –		· 		<u>**</u> <u>*</u> *	<u>*</u> *_		2 1					1					
0	.5 1	2	4	8 16	5 32	m/(kd)	s 32	64	128	256 5	5121024	32	64	128	256	5121	.024

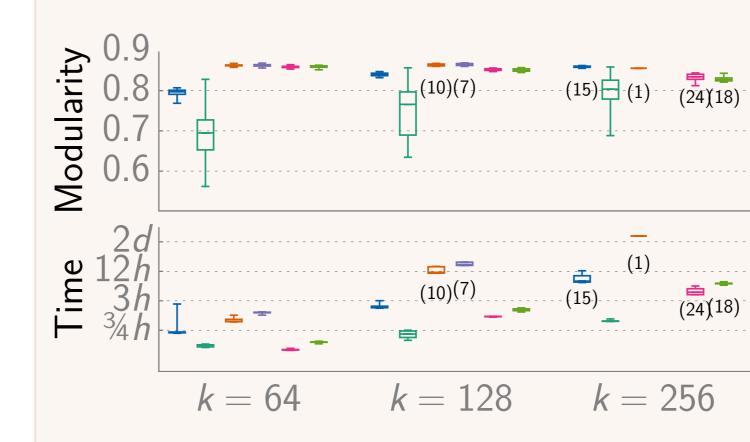
Figure: SSE ratios as a function of m/kd, and sketching speed-ups for 2 different batch sizes.

Conclusions:

- ► Using fast matrices gives the **same clustering quality**.
- ▶ For *d* not too small, fast transforms give **significant speedups**.

Hierarchical clustering on Amazon co-purchasing graph

We work on an Amazon co-purchasing network, ($n \approx 3.10^5$ nodes), using spectral and random features [3]. The clustering quality is measured with modularity.



Features	Subs.	W matrix	Algorithm
— spectral	No	n/a	KM
— random	Yes	n/a	KM
— random	No	Dense	CL-OMPR
— random	No	Structured	CL-OMPR
— random	No	Dense	Hierarchical
— random	No	Structured	Hierarchical

Figure: Boxplots of modularity (the higher the better) and clustering time. Using Xeons E5640, 30 repetitions, R = 2 for KM, R = 20 for KM+subsampling, m = 10kd.

Conclusions:

► The same clustering quality is obtained when using fast transforms.

Clustering quality on the MNIST dataset

Spectral clustering $\rightsquigarrow d = k = 10 \rightsquigarrow$ no speedup, but what about clustering quality? Metric: SSE and adjusted Rand index (ARI).

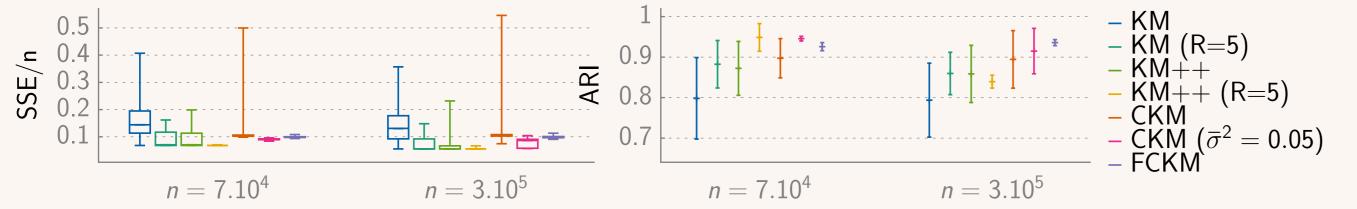


Figure: SSE (the lower the better) & ARI (the higher the better); m = 1008; 120 exps; R="replicates"; uniform initialization.

Conclusions:

- Using fast transforms gives similar or slightly better results.
- ▶ Results are **more stable using fast transforms** → interesting even for small *d*.

► The hierarchical algorithm is **much faster**, and achieves similar modularities.

What's next?

- Extend this framework to other learning tasks.
- ► Design more efficient algorithms to solve the optimization problem (2).

References

- [1] Nir Ailon and Bernard Chazelle. "The fast Johnson–Lindenstrauss transform and approximate nearest neighbors". 2009.
- [2] Nicolas Keriven et al. "Compressive K-means". 2017.
- [3] Nicolas Tremblay et al. "Compressive spectral clustering". 2016.
- [4] Felix X. Yu et al. "Orthogonal Random Features". 2016.