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LARGE-SCALE HIGH-DIMENSIONAL CLUSTERING WITH FAST SKETCHING

Antoine Chatalic?, Rémi Gribonvaly and Nicolas Keriven?

? Université de Rennes 1, France y Inria Rennes, France

ABSTRACT

In this paper, we address the problem of high-dimensional k-means
clustering in a large-scale setting, i.e. for datasets that comprise
a large number of items. Sketching techniques have already been
used to deal with this “large-scale” issue, by compressing the whole
dataset into a single vector of random nonlinear generalized mo-
ments from which the k centroids are then retrieved efficiently. How-
ever, this approach usually scales quadratically with the dimension;
to cope with high-dimensional datasets, we show how to use fast
structured random matrices to compute the sketching operator effi-
ciently. This yields significant speed-ups and memory savings for
high-dimensional data, while the clustering results are shown to be
much more stable, both on artificial and real datasets.

Index Terms— Sketching, Sketched Learning, Fast Transforms,
Structured Matrices, k-means, Random Fourier Features.

1. INTRODUCTION

Let X = fx1; ::: ; xng � R
d be a set of n d-dimensional points.

We consider the problem of k-means clustering, which consists in
finding k centroids C = fc1; ::: ; ckg � R

d minimizing the sum of
squared errors (SSE):

SSE(X ; C) =Pn
i=1minj kxi � cjk2 : (1)

We are interested in the case where the size of the dataset n, the
dimension d, and possibly the number of clusters k are large. The
standard iterative k-means heuristic of Lloyd [1] is widely used be-
cause of its simplicity but scales in �(ndk) per iteration, cannot be
easily distributed, and requires to load all the dataset in memory,
which limits its usability in this context.

A framework [2] has been proposed to deal with large collec-
tions by compressing the whole dataset into a single m-dimensional
vector ẑ of random generalized moments calculated as follows:

ẑ = 1

n

Pn
i=1 �(xi); where�(x) = [e�i!

T

1
x; ::: ; e�i!

T

m
x]T : (2)

The !i are here frequency vectors drawn i.i.d. from an isotropic
distribution � [3]. The sketch is therefore simply made of m ran-
dom samples of the empirical characteristic function. Note that the
sketching process can be very easily performed in a distributed man-
ner, or even on a data stream. As depicted in Figure 1, the centroids C
and associated weights � can then be estimated efficiently from this
sketch, and without using the initial data, as one solution of:

C; � 2 argminC;�

ẑ �Pk
i=1 �i�(ci)


2

: (3)

This problem has many similarities with compressive sensing, and
theoretical guarantees have been obtained in this context [4].

The optimization problem is non-convex, but approximate solu-
tions can be found using greedy heuristics such as CL-OMPR [3]

x1 x2 � � � xn ẑ C
Sketching

eq. (2)

Learning

eq. (3)

Dataset
(size d � n)

Sketch
(size m)

Parameters
(size p = kd)

Fig. 1: Overview of the general workflow. In practice, the sketch
size m should be of the order of p to get good results, and p = kd.

which is inspired from orthogonal matching pursuit. Some other al-
gorithms, bearing similarities with CL-OMPR, have been proposed
in other contexts for solving such sparse inverse problems [5, 6].

If X = [x1; ::: ; xn] denotes the dataset in a matrix form, and
W = [!1; ::: ; !m] the dense d � m matrix of frequency vectors,
computing the sketch involves computing the matrix productWTX .
Previous empirical studies [2] suggested that the sizem of the sketch
should be of the order of the number of parameters to learn (i.e.
m � p = kd) to obtain a quality of clustering that is similar to k-
means. Under this assumption, the cost of both sketching and learn-
ing phases is dominated by such matrix products and scales quadrat-
ically with d. Multiplications by large random matrices appear in
various contexts, and multiple works have proposed to replace them
by random structured matrices, which behave similarly but have less
degrees of freedom, and for which the matrix product can be com-
puted efficiently.

We show how to combine in a single framework the scalabil-
ity of the sketching approach — thus allowing us to cope with very
large and distributed collections (large n) — with the computational
efficiency of such fast transforms (large d). In our approach, both
sketching and learning phases now scale with d in �(d log

2
(d)),

which makes it possible to work with high-dimensional data. When
the number of centroids k is large as well, we propose to leverage
a hierarchical learning algorithm previously introduced for Gaussian
mixtures [3], thus reducing the complexity of the learning phase with
respect to k from �(k3) to �(k2 log k).

We present some related works in Section 2, detail the proposed
method (Section 3) and give experimental results (Section 4); the fast
transforms are shown to give significant speed-ups in high dimen-
sion, and perhaps surprisingly much more stable clustering results
both on artificial and real datasets.

2. RELATED WORK

Multiple approaches have been used for large-scale high-dimensional
k-means. The dimension of the data can be reduced using feature se-
lection [7], sparsification [8], or geometry-preserving dimensionality-
reduction techniques [9] according to the Johnson-Lindenstrauss
lemma [10]. Coresets methods [11], on the other side, reduce the
size of the dataset but not the dimension. Sketching using random
Fourier sampling [12] has been used not only for k-means [2], but



also for Gaussian mixtures estimation [3]. The method is reminis-
cent of the generalized method of moments [13, 14].

Multiplications by large random matrices are used in many con-
texts; applications include random feature maps computation [12]
and cross-polytope locality sensitive hashing. A seminal work in
this context is the Fastfood transform [15], which is also included in
the broader framework of Choromanski and Sindhwani [16]. In this
paper, we use a transformation that is very close to the one of Yu
et al [17], and appears in multiple variants in the literature [18, 19],
using combinations of diagonal and Walsh-Hadamard matrices as
initially proposed by Ailon and Chazelle [20].

3. LEVERAGING FAST TRANSFORMS

We present here a general idea of how to use structured matrices
(Section 3.1), show how to build a fast square matrix in the case
d = 2q (Section 3.2) and explain how to generalize in Section 3.3;
we propose in Section 3.4 to use a hierarchical learning approach
to deal with large values of k, and give a summary of the different
methods in Section 3.5.

3.1. General Idea

We explained in the introduction that the sketch (2) can be com-
puted by calculating the matrix product WTX . For large high-
dimensional collections, it is unlikely that the amount of available
memory will be sufficient, but X can still be divided into multiple
chunks if needed. In the extreme case, one can sketch the datapoints
(i.e. compute the �(xi)) one at a time and average these sketches on
the fly; this scenario is interesting for streaming data as well.

The main contribution of this paper is to demonstrate the ben-
efits of replacing the dense matrix of frequencies W by a fast ran-
dom structured matrix Wf , such that the sketching operation can
be computed efficiently. As the (!i)1�i�m are drawn i.i.d. from
an isotropic distribution, we can rewrite W = GR, where R is a
m�m diagonal matrix controlling the distribution of radiuses, and
G a Gaussian matrix (i.e. all entries drawn i.i.d. from N (0; 1)),
which will be easier to “approximate” with structured matrices. In
the following, we use a construction of the form Wf = GfRf ,
where Rf is similar to R up to renormalization, and Gf is a fast
ersatz of a Gaussian matrix.

3.2. Structured Square Matrices

We explain here how to build a single structured square block (which
is similar to assuming m = d), when d = 2q . The construction
of the structured matrix Wf from these square blocks is detailed
just after. The fast transform that we use relies on Walsh-Hadamard
matrices, which are defined recursively as follows (still for d = 2q):

H1 = [1] and H2d =
1p
2

�
Hd Hd

Hd �Hd

�
; (4)

where Hd is a matrix of dimension d� d. The product Hdx can be
computed using the fast Walsh-Hadamard transform, whose com-
plexity scales in �(d log(d)), rather than using the standard �(d2)
matrix-vector product.

In the following, H always denotes a Walsh-Hadamard matrix,
and we consider diagonal matrices Di with diagonal entries drawn
independently using the Rademacher distribution, i.e. �1 with prob-
ability 1=2. Ailon and Chazelle have initially introduced this block
HD as a preprocessing step in order to smooth the energy distribu-
tion of input data vectors before applying a sparse transform [20].

CKM FCKM KM

Time kd
2(n+ k

2) kd ln (d)(n+ k ln (k)) ndkI
Sketching nkd2 nkd ln(d) n=a
Learning

CL-OMPR k3d2 k3d ln(d) n=a
Hierarchical k2 ln(k)d2 k2 ln(k)d ln(d) n=a

Space kd(d+ nb) kdnb nd

Sketch kd kd n=a
W kd2 kd n=a
WTX kdnb kdnb n=a

Table 1: Time and space costs for KM, CKM and FCKM, assuming
m � kd. Here d denotes the dimension, n the size of the collec-
tion, nb the batch size for sketching, k the number of clusters, I the
number of iterations. All complexities should be read as �(�).

Now for d = 2q , a square block B can be built as:

. . .

r1

rd0

0

R

B = Hd

H

. . .
�1
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0

D1

Hd

H

. . .
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0

D2

Hd

H

. . .
�1

�10

0

D3

(5)
where the (Di)1�i�3 are drawn independently, and the (ri)1�i�d
i.i.d. from the desired radius distribution. Empirical experiments
suggested that using twoHDi blocks was not sufficient, and the first
theoretical guarantees have been proposed using three blocks [17].

3.3. Generalization

We assumed previously that d was a power of 2, and explained how
to build one square matrix. In the general case, it has been empiri-
cally observed [2] that a choice of m � kd for the targeted sketch
size yields good clustering results, so we need to generalize our con-
struction to arbitrary m � d matrices with m > d, and to deal with
dimensions d that are not powers of 2.

When d is not a power of 2, we denote q = dlog
2
(d)e, r =

dm=2qe, dpad = 2q and mpad = r2q . We use for sketching a
dpad �mpad matrix Wf , whose transpose WT

f is built by vertically
stacking square blocks of size 2q � 2q that are drawn independently
according to (5). We use zero-padding on the data to get a matrix
Xpad of matching dimensions, and keep only the m first rows when
computing the product WT

f Xpad.
The storage cost for this construction is 4rdpad = 4mpad,

which may yield significant savings in high dimension. The cost of
sketching is now �(nkd log(d)); the CL-OMPR algorithm, which
also involves computing the function � as it appears in loss func-
tion (3), scales with d in �(d log(d)) as well.

3.4. Hierarchical Learning

Although the learning phase benefits from using fast transforms as
well when the dimension d is high, a greedy algorithm such as CL-
OMPR also scales with the number of clusters k in �(k3), which
can become prohibitive for some applications. A hierarchical ap-
proach has been introduced for learning Gaussian mixtures [3], but
never been adapted for k-means; it consists in learning a mixture
of Gaussians with diagonal covariance by recursively splitting each
Gaussian in two along the dimension of highest variance. We pro-
pose to apply this algorithm, and then simply use the centers of the
Gaussians as an initialization for minimizing the loss function (3).
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Fig. 2: Sketching speed-ups (i.e. ratios of running times without/with fast transforms) for three values of the batch size nb, speed-up of
the learning phase, and proportion of the sketching time spent on computing the nonlinearity (sines and cosines). Results obtained on 30
experiments. In the rightmost figure, plain and dashed lines denote respectively the usage of fast and dense matrices.

3.5. Summary

In the following, KM stands for “k-means” [1], CKM for “Compres-
sive k-means” [2], and FCKM for “Fast Compressive k-means” —
i.e. using structured matrices. We refer to the learning algorithm
using fast hierarchical initialization as “Hierarchical”, and both the
CL-OMPR and Hierarchical algorithms can be used with dense or
structured matrices, i.e. in the CKM or FCKM frameworks.

We give in Table 1 a summary of space and time complexities
of the different methods assuming m = �(kd), as it empirically [2]
seems to be a necessary condition to get good clustering results. One
should keep in mind that the sketching time can be drastically re-
duced by relying on distributed computing, which is not the case
when using Lloyd’s k-means.

4. EXPERIMENTAL VALIDATION

We first give some implementation details (Section 4.1), and then
present experiments on randomly generated (Section 4.2) and real
data (Sections 4.3 and 4.4).

4.1. Implementation details

We implemented the fast transform proposed in Section 3 as a con-
tribution to the SketchMLbox Matlab Toolbox [21], which already
includes the sketching procedure, the CL-OMPR heuristic and the
Hierarchical algorithm for Gaussian mixtures, but always using a
dense matrix of frequency vectors.

The critical part of the code is written in C and compiled to
binary MEX files. We use the adaptive Fast Walsh-Hadamard
Transform of the Spiral project [22, 23], which is designed for
an optimized usage of the cache hierarchy [24]. One might get
higher speed-ups by relying on carefully designed SIMD implemen-
tations [25]. In the experiments, KM always refer to the Matlab
implementation of k-means using Imax = 1000 as the maximum
number of iterations, and with uniform initialization — except when
using k-means++ in Section 4.3.

4.2. Synthetic Data

We first show on artificial data that one can replace the dense matrix
by a structured one without degrading the quality of the results. We
perform here k-means clustering on n = 10000 data vectors ran-
domly generated according to a mixture of k = 10 Gaussians with
identity covariance matrix. The means are drawn with respect to a
centered Gaussian with covariance 1:5k1=dId to create clusters that
are well separated with high probability [3].

The quality of the clustering is measured using SSE (1), and Fig-
ure 3 shows the ratios obtained using CKM or FCKM with respect to
Matlab’s k-means (KM). These results confirm that the compressive
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Fig. 3: Ratios of SSE for CKM and FCKM with respect to one run
of Matlab’s k-means (KM) as a function ofm=(kd). Averaged on 30
repetitions for each d 2 f8; 16; 32; 64; 128; 256; 512g, and k = 10.

k-means framework gives good clustering results provided that the
sketch is large enough, but also that in this case, using fast transforms
does not degrade the clustering quality.

Sketching speed-ups obtained using structured rather than dense
matrices of frequencies are given in Figure 2. We consider differ-
ent values of the size nb of the batches used for sketching — i.e. we
compute products such asWTXi, whereXi is a batch of size d�nb.
The speed-ups are significant for high-dimensional data, and espe-
cially in the “streaming” case, i.e. when sketching the vectors one
by one; this is very interesting when the amount of available mem-
ory is limited. For larger batch sizes, using fast transforms might not
be useful for small dimensions (the BLAS matrix-matrix product
being too optimized to compete with it), but still allows us to deal
with high-dimensional datasets. The learning phase benefits simi-
larly from using fast transforms as depicted on the 4th sub-figure.
Note that the computational cost of the complex exponential is very
high (5th sub-figure): approximately 70% of the time for all dimen-
sions when using fast transforms. Working with alternative feature
maps relying on cheaper non-linear functions could be interesting
for future works.

4.3. Spectral clustering on MNIST

As long as we work on high-dimensional datasets, one should expect
to observe on real datasets the same speed-ups as the ones obtained
on random data. In the following, we consider datasets with dimen-
sions for which one should not expect to get significant speed-ups
when using a large batch size according to Figure 2; however, it is
highly interesting to check whether the fact that structured matrices
yield the same clustering quality on random data (see Section 4.2)
also holds for real datasets.

We perform here clustering on the MNIST dataset [26] of hand-
written digits, which has k = 10 classes. The original dataset con-
tains n = 7� 104 pictures. Distorted variants of these images have
been generated using infiMNIST [27], so that one other dataset of
size n = 3�105 is used for evaluation as well. For every image, we
extract dense SIFT descriptors [28], which are concatenated into a
single vector. We compute the similarity matrix between these vec-
tors, and the k first eigenvectors of the associated Laplacian matrix



0.2

0.4

N = 7:104 N = 3:105

0.7

0.8

0.9

1

N = 7:104 N = 3:105

SS
E

/n

A
R

I

KM (R=1)
KM (R=5)

KM++ (R=1)
KM++ (R=5)

CKM
CKM (�2 = 0:05)

FCKM

Fig. 4: Min/quartiles/max boxplots and median of SSE (left, the
lower the better) and mean & standard deviation of the adjusted Rand
index (right, the higher the better). Results obtained on 120 experi-
ments, m = 1008; R corresponds to the number of replicates. KM
was run with a maximum number of 1000 iterations, using uniform
initialization. The legend, when read column by column from KM
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in order to get n spectral features [29] in dimension d = k = 10.
Figure 4 gives the results in terms of SSE and adjusted Rand in-

dex (ARI), for KM, CKM and FCKM. We also consider k-means++
(KM++) [30], and include results with R = 5 replicates, i.e. run-
ning the algorithm 5 times and keeping the best results. Note that for
CKM and FCKM, the distribution used to draw the frequency vec-
tors involves a parameter �2 that is estimated automatically by first
sketching a small subset of the data [3]. For comparison, we also
consider using CKM with a fixed value of �2 rather than relying on
this estimation. Results obtained with CKM contain roughly 15% of
outliers. Using CKM with �2 = 0:05 gives better and highly con-
centrated results, but one usually does not have this knowledge of the
dataset. FCKM turns out to give similar results in terms of SSE and
ARI, but without requiring any knowledge on �2, as it is here again
automatically estimated. Results are well concentrated, contrarily to
what is obtained with Lloyd’s k-means, even with R = 5 replicates.
KM++ with R = 5 replicates gives good results in terms of SSE, but
lower ARI for n = 3 � 105; one should keep in mind that KM and
KM++ require to have the whole dataset in memory.

In summary, even in small dimensions where sketching might be
faster with dense matrices, the use of structured random matrices is
potentially useful in terms of stability. To get the best possible speed,
one can rely on the explicit dense representation of such structured
matrices if applicable.

4.4. Hierarchical clustering on a co-purchasing graph

Computing spectral features involves computing the eigendecompo-
sition of the Laplacian matrix, which is usually expensive. Tremblay
et al. proposed to bypass this step by using as features �(log k) fil-
tered random graph signals on the graph associated to the Laplacian
matrix [31]. Standard KM is then applied on a random subset of
these features, and interpolated to the whole collection. We combine
these fast random features with the FCKM framework, thus allowing
us to avoid the subsampling step.

We work on the Amazon co-purchasing network [32], which is
a graph comprising n = 334863 nodes and E = 925872 edges. As
there is no ground truth for this dataset, we used k = 64; 128; 256.
We compare the original spectral clustering (SC), compressive
spectral clustering (CSC) [31], and 4 methods using sketching on
the same random features: we combine the two types of matrices
(dense/structured) with the two learning procedures discussed in
Section 3.4 (CL-OMPR/Hierarchical). Please refer to the table of
Figure 5 for a summary.

Standard KM is launched with R = 2 replicates. Using com-
pressive spectral clustering, the k-means step is performed only on a
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Fig. 5: Boxplots of modularity (the higher the better) and clustering
time for k = 64; 128; 256. Only the learning times are displayed
for sketching methods; sketching times are much smaller, even on
a single core. All experiments were run on Intel(R) Xeon(R) CPUs
E5640 and repeated 30 times (or less for experiments that were too
long; the number of iterations is indicated below in these cases, and
FS2C does not appear for k = 256). The table is a summary of the
different methods (in the order of the boxplots, from left to right).

subset of the features and is therefore much faster; we used R = 20
replicates for a fair comparison. We used m = 10kd for the sketch
size when using CKM. All initializations were performed uniformly.

The results are presented in Figure 5 (top), where the elapsed
times are given and the clustering quality is measured with the mod-
ularity metric [33]. As regards the elapsed times, CL-OMPR is not
competitive but satisfying results are obtained with the hierarchi-
cal algorithm. Similar modularities are obtained with and without
structured matrices; the results are slightly lower when using the hi-
erarchical algorithm, but in both cases they are highly concentrated,
whereas CSC yields a high variance.

5. PERSPECTIVES

We proposed a way of combining the efficiency of fast structured
matrices with the scalability of sketching-based approaches and hi-
erarchical learning methods, yielding a k-means framework which
can handle large and high-dimensional collections with a limited
memory footprint. Experimental validation confirms that significant
speedups are obtained in high dimension, and the clustering results
seem to be much more stable.

It would of course be interesting to be able to control the error
induced by the use of structured matrices. In the theoretical frame-
work [4] which has been proposed for sketched learning, the matrix
used for sketching implicitly defines a kernel function, and study-
ing the kernel associated with the structured matrices used in our
approach should help to establish theoretical guarantees.

Although the hierarchical algorithm proposed for the approxi-
mate minimization allows to deal with a larger number of centroids
compared to CL-OMPR, it still scales quadratically with k when
m = �(kd), leaving room for improvement; locality could for in-
stance be leveraged, as it has been done for orthogonal matching
pursuit [34]. Designing provably-good procedures for this optimiza-
tion problem is challenging as well.
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