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 a b s t r a c t

In this paper, we study how the Koopman operator framework can be combined with kernel 
methods to effectively control nonlinear dynamical systems. While kernel methods have typically large 
computational requirements, we show how random subspaces (Nyström approximation) can be used 
to achieve huge computational savings while preserving accuracy. Our main technical contribution is 
deriving theoretical guarantees on the effect of the Nyström approximation. More precisely, we study 
the linear quadratic regulator problem, showing that the approximated Riccati operator converges 
at the rate m−1/2, and the regulator objective, for the associated solution of the optimal control 
problem, converges at the rate m−1, where m is the random subspace size. Theoretical findings are 
complemented by numerical experiments corroborating our results.

© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nonlinear dynamical systems are ubiquitous, and pose a great 
challenge in terms of system identification and control. A power-
ful approach to deal with nonlinear dynamical systems is
provided by the Koopman operator framework (Bevanda, Sos-
nowski, & Hirche, 2021; Brunton, Budišić, Kaiser, & Kutz, 2022; 
Koopman, 1931; Mezić, 2021). In this approach, the nonlinear 
dynamical system is transformed through a set of nonlinear func-
tions, called observables, so that the dynamics of the transformed 
states are linear, and can be used to reconstruct the states of the 
system. The Koopman operator, at the basis of this technique, was 
originally introduced in the context of autonomous dynamical 
systems (Koopman, 1931). However, as shown in the seminal 
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work of Korda and Mezić (2018), the Koopman operator formu-
lation allows to apply linear control techniques, which are well 
understood and efficient to compute. As discussed by Brunton 
et al. (2022) and Otto and Rowley (2021), the control input can 
be included in the Koopman framework by either defining a 
family of Koopman operators (one for each value of the control 
input) (Nüske, Peitz, Philipp, Schaller, & Worthmann, 2023; Peitz 
& Klus, 2019), or by directly extending the state space to include 
the control input as an additional state of the system. The latter 
perspective is the one we consider in this paper. A key challenge 
to apply the Koopman operator approach is to choose the suitable 
space of observable functions, both with and without considering 
the control input (Korda & Mezić, 2018). Common choices include 
splines (Korda & Mezić, 2018), polynomial or Fourier bases (Abra-
ham, de la Torre, & Murphey, 2017), and neural networks (Hao, 
Huang, Pan, Wu, & Mou, 2024; Shi & Meng, 2022; Yin, Welle, 
& Kragic, 2022), see also Gibson, Calvisi, and Yee (2022), Kaiser, 
Kutz, and Brunton (2021) and Korda and Mezić (2020).

In this paper, we consider observables in a reproducing kernel 
Hilbert space (RKHS) (Aronszajn, 1950). Band limited functions, 
splines and Sobolev spaces are then special cases (Berlinet & 
Thomas-Agnan, 2011). This choice was already mentioned in Ko-
rda and Mezić (2018) and has been recently analyzed in Be-
vanda et al. (2024), Das and Giannakis (2020), Giannakis, Henrik-
sen, Tropp, and Ward (2023), Khosravi (2023), Klus, Nüske, and 
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Summary: given some controls and corresponding state trajectories of a nonlinear dynamical system, we use kernels to build a linear, data-driven model of 
the system. Kernels yield a computationally inefficient representation of the state space, due to the inversion of the kernel matrix, which we render computationally 
tractable using the Nyström method.
Hamzi (2020), Kostic et al. (2022) and Philipp, Schaller, Worth-
mann, Peitz, and Nüske (2024) for the forecasting and analysis of
dynamical systems. Kernel methods are popular in machine
learning (Schölkopf & Smola, 2002), as an RKHS has the advantage 
of being a possibly infinite dimensional space and corresponds to 
universal approximators (Steinwart & Christmann, 2008), while 
the associated estimators are nonparametric (Wasserman, 2006) 
and their computation reduces to finite-dimensional numerical 
problems (Schölkopf, Herbrich, & Smola, 2001). When efficiency 
is needed, further approximations are however required. In this 
paper, we use the so-called Nyström method,  which can be inter-
preted as a dimensionality reduction technique. More precisely, 
we approximate the dynamics of the observable functions in the 
RKHS using projections on random and data-dependent finite-
dimensional subspaces of functions (Nyström, 1930; Williams & 
Seeger, 2000). The effect of this approximation has been
characterized for supervised machine learning, see, e.g., Musco 
and Musco (2017) and Rudi, Camoriano, and Rosasco (2015) and 
references therein, and more recently for dynamical system iden-
tification, see DeGennaro and Urban (2019) and Meanti, Chatalic, 
Kostic, Novelli, Pontil, and Rosasco (2023). Besides the Nyström 
method, as an alternative kernel approximation, Nüske and Klus 
(2023) study the case of random Fourier features for dynamical 
system identification.

In this paper, we combine the above ideas and develop an 
efficient and accurate control approach for nonlinear dynami-
cal systems, based on using the Koopman operator framework 
together with kernels and the Nyström method. Our main tech-
nical contribution is the analysis of the approximation due to 
the Nyström method but, unlike previous works, we consider a 
control setting. We focus on the linear quadratic regulator (LQR) 
method, which has appealing theoretical properties, such as an 
analytic form of the optimal solution, and easily allows to deal 
with multi-input-multi-output systems. Our main result studies 
the impact of the Nyström approximation on the optimal control 
problem. Namely, in a fixed design analysis, we quantify the 
error introduced by the Nyström approximation to an empirical, 
kernel-based estimator of the nonlinear dynamics. We further 
show how this error propagates to the solution of the optimal 
control problem, if such an empirical estimator is employed in 
an LQR. Instrumental to our analysis are recent results on learning 
and controlling linear systems (Dean, Mania, Matni, Recht, & Tu, 
2020; Mania, Tu, & Recht, 2019; Simchowitz, Mania, Tu, Jordan, 
& Recht, 2018). We complement our theoretical analysis with 
some numerical experiments. The combination of the Koopman 
approach and the LQR (Moyalan, Choi, Chen, & Vaidya, 2023) has 
been applied to challenging robot learning problems (Abraham & 
Murphey, 2019; Yin et al., 2022), also involving soft robots (Hag-
gerty et al., 2023). Here, we assess the proposed control pipeline 
on a classic control benchmark, i.e., the Duffing oscillator (Korda 
2

& Mezić, 2020), and on the compelling problem of identifying the 
dynamics of cloth (Amadio, Delgado-Guerrero, Colomé, & Torras, 
2023; Coltraro, Amorós, Alberich-Carramiñana, & Torras, 2022; 
Luque, Parent, Colomé, Ocampo-Martinez, & Torras, 2024; Zheng, 
Colomé, Sentis, & Torras, 2022). To conclude, we observe that 
concurrent to our work, Driessen (Driessen, 2023) also consid-
ers kernel-based methods and their Nyström approximation for 
control purposes, but without any theoretical guarantees, and 
learning a bilinear (Korda & Mezić, 2018; Moyalan et al., 2023) 
data-driven system.

As shown in Fig.  1, our contributions are the following:
• we show how the Koopman operator framework for

controlled dynamical systems can be used to design linear 
control by lifting the state-space representation to an RKHS;

• we show how the Nyström method can be exploited to 
derive efficient computations;

• we prove finite sample bounds for the convergence of the 
Nyström data-driven system to the infinite dimensional 
state-space representation in RKHS;

• when using an LQR, we show how these error rates due 
to the Nyström approximation translate to the associated
Riccati operator, and to the optimal control sequence com-
puted by solving the LQR;

• we provide a publicly available and open-source implemen-
tation of the proposed Nyström-based system identifica-
tion and optimal control algorithms2 that we test on some 
illustrative examples.

The structure of this paper is as follows. In Section 2, we report 
the main technical background of our work. In Section 3, we 
discuss how to combine reproducing kernels and the Nyström 
method to obtain linear predictors for nonlinear systems. In Sec-
tion 4 we discuss how to use such a predictor in an LQR. In 
Section 5, we present the core theoretical contributions of our 
work, while Section 6 contains a numerical evaluation of our 
identification algorithm and the associated LQR problem.

2. Background and notation

In this paper, we consider a nonlinear controlled discrete 
dynamical system, which is approximated for control purposes 
by a surrogate dynamical system whose dynamics are linear both 
in the lifted state and in the input variable. This type of heuristic 
approximation, previously considered for instance by Korda and 
Mezić (2018), has been empirically shown to be suited to non-
linear systems that are affine in the control input, and have no 
coupled terms between state and input variables. While this may 
be seen as a restriction of the class of dynamical systems that 

2 Available at https://github.com/LCSL/nys-koop-lqr.

https://github.com/LCSL/nys-koop-lqr
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can be modeled with our approximation, we can observe that it 
is already a fairly general model, see, e.g., the dynamical systems 
we study in Section 6, or the soft robot studied in Haggerty et al. 
(2023).

We denote the state vector as x ∈ Rd, the output as y ∈ Rny , 
and the control input vector as u ∈ Rnu . For a sequence of control 
inputs (ut )t∈N, an initial state x0, and a function f : Rd+nu → Rd, 
we are interested in studying deterministic nonlinear dynamical 
systems described by the difference equation 

xt+1 = f (xt ,ut ), (1)

where t ∈ N denotes the discrete-time instant. As mentioned 
before, the nonlinear map is considered to be affine in the control 
variable, and without coupled terms, i.e., for g : Rd

→ Rd, 
B : Rnu → Rd, f (x,u) = g(x) + Bu. The state and the 
input can be merged in an augmented finite-dimensional state, 
denoted by w = [xT ,uT

]
T

∈ Rd+nu . We will use both notations 
interchangeably throughout the article. For a suitable space A of 
observable functions ξ , the Koopman operator K : A → A can be 
defined as 

(Kξ )(wt ) = ξ (wt+1), ∀ξ ∈ A. (2)

 The definition in (2) follows the Koopman with inputs and 
control (KIC) formalism (Proctor, Brunton, & Kutz, 2018). Note 
that when the control is prescribed by a state-feedback gain, this 
definition is related to the standard definition of the Koopman 
operator for the associated autonomous dynamics. An alterna-
tive definition of the Koopman operator involving sequences of 
controls propagated using the shift operator has also been pro-
posed (Korda & Mezić, 2018). However, all definitions of the 
Koopman operator with control suffer from a common drawback, 
which is that they implicitly assume that a space of observable 
A invariant under the action of the Koopman operator indeed 
exists. 

As we will discuss, a fundamental component of our learning 
framework is the notion of RKHS (Aronszajn, 1950). For an input 
space X , an RKHS H is a Hilbert space of scalar functions on X
for which there exists a k : X × X → R, the reproducing kernel, 
so that, for any χ ∈ X  and f ∈ H , it holds k(χ, ·) ∈ H and f (χ ) =

⟨f , k(χ, ·)⟩H . The latter notation denotes the inner product in the 
RKHS. An RKHS is a potentially infinite-dimensional space with 
universality properties. Some examples of reproducing kernels 
are given by the Gaussian kernel, or by the Matérn family of 
kernels, which can be linked to Sobolev spaces. Note that the 
Koopman operator is linear in the observable ξ . It can thus be 
seen as a convenient way to build a linear approximation of the 
original dynamical system, at the cost of manipulating the lifted 
state ξ (w).  In this paper, we take inspiration from the Koopman 
formalism in order to devise a data-driven approximation of the 
dynamics in the RKHS suitable to use with an LQR. We focus 
on the error induced by the use of the Nyström approximation, 
however we do not relate the learned dynamics in the RKHS to 
the definition of the Koopman operator with control in (2). 
Notations. In the following, we use the notation ∥ · ∥ for the 
operator norm. We denote the Euclidean norm of a vector as ∥·∥2. 
For any Hilbert space H we denote HS(H) the Hilbert space of 
Hilbert–Schmidt operators on H and ∥·∥HS the associated Hilbert–
Schmidt norm. We denote A∗ the adjoint of an operator A, and 
A† the pseudo-inverse of A. Besides, σmin(A) denotes the smallest 
singular value of A.3

3 A comprehensive summary of the notation used in the article is available 
at https://github.com/LCSL/nys-koop-lqr/tree/main/proofs.
3

3. Koopman system identification

As discussed previously, we focus on approximations of the 
original dynamical system which are linear in the control input. 
In the following, we will show how to model such a linearity in 
the control input. We will also detail the regression problems that 
are solved in order to retrieve the data-driven, kernel-based dy-
namics, and show how such kernel-based dynamics can be trans-
formed to vector-valued dynamics by leveraging the Nyström 
method.

3.1. Choosing the Koopman lifting function

In order to define a suitable state and control transformation, 
we consider the RKHS H1 associated to a stationary positive 
definite kernel k : Rd

× Rd
→ R. We let ψ : Rd

→ H1, 
ψ(x) := k(x, ·). We define H := H1 ×Rnu  and choose as our state 
and input transformation 

φ : Rd+nu → H, φ(w) :=

[
ψ(x)
u

]
. (3)

The choice of the stationary kernel allows to lift the data through 
an infinite-dimensional nonlinear transformation. Moreover, φ is 
linear in the control input variable, which allows to use linear 
control techniques on the system of interest. However, φ is 
infinite-dimensional for many standard choices of kernel func-
tions. We will show in Section 3.3 that a related finite-dimensional
lifting function can be obtained by using a Nyström approxima-
tion of the kernel k.

3.2. Regression problem and corresponding solutions

We now explain how the function φ introduced in (3) can 
be leveraged to obtain a linear, data-driven surrogate dynamical 
system to be used in place of the original nonlinear one when 
designing the control law. The difference equation of this data-
driven model can be estimated by least-squares regression, as we 
detail in the following.

Having a dataset of n training pairs4 ((wi,wi+1))i=1,...,n includ-
ing control inputs and corresponding states, i.e. wi := [xTi ,u

T
i ]

T , 
we define the sampling operators for the system’s state (Sx) and 
control input (Su) as

Sx : H1 → Rn, Sxl:= 1
√
n [l(x1), . . . , l(xn)]

T , (4)

Su : Rnu → Rn, Suu:=
1

√
n [⟨u1,u⟩, . . . , ⟨un,u⟩]

T . (5)

The operator Sx returns a renormalized vector of the evaluations 
of its input l at the points (xi)1⩽i⩽n, while the operator Su cor-
responds to sampling the linear function ⟨u, ·⟩ associated to its 
input at the locations (ui)1⩽i⩽n. Note that with these definitions, 
we can define the following compound sampling operator: 

S : H1 × Rnu → Rn, S
[

l
u
]

= Sxl + Suu. (6)

Moreover, as discussed by Korda and Mezić (2018), when con-
sidering Koopman operator regression for controlled systems, the 
regression output can be limited to be the one-step-ahead state, 
i.e., we are not interested in forecasting the evolution of the 
control input variable. Thus, the sampling operator for the output 
training points (x2, . . . , xn+1) can be written as 

Zx : H1 → Rn, Zxl = 1
√
n [l(x2), . . . , l(xn+1)]T . (7)

4 We use this notation for simplicity, however in practice one could also put 
together samples obtained by sampling multiple different trajectories.

https://github.com/LCSL/nys-koop-lqr/tree/main/proofs
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Empirical risk minimization. The dynamics can be estimated by 
solving the following problem over the set of linear operators 
from H to H1:

Gγ := arg min
W :H→H1

R(W ) + γ ∥W∥
2
HS (8)

where R(W ) :=
1
n

n∑
i=1

∥ψ(xi+1) − Wφ(wi)∥2
H1
. (9)

Here γ > 0 is a regularization parameter, and we recall that φ
is defined in (3). Note that this regression problem is not strictly 
speaking a Koopman regression problem, as the regression input 
and output spaces are different. The objective in (8) is continuous, 
coercive and strictly convex, and thus admits a unique minimizer. 
As shown in Appendix  A, the risk function can be rewritten as 
R(W ) = ∥Zx − SW ∗∥

2
HS and thus the solution of (8) can be 

expressed as 
Gγ = Z∗

x (SS
∗
+ γ I)−1S. (10)

Although we started the exposition with the definition of the 
Koopman operator for simplicity, the operator Gγ  is more sim-
ilar to a regularized conditional mean embedding (Muandet, 
Fukumizu, Sriperumbudur, & Schölkopf, 2017) or an embedded 
Perron–Frobenius operator (Klus, Schuster, & Muandet, 2020).

For any initial state x0 ∈ Rd, this operator defines the follow-
ing linear dynamics in H1: ⎧⎨⎩z0 = ψ(x0), (a)

zt+1 = Gγ
[ zt

ut

]
. (b)

(11)

Affine dynamics. Note that the operator Gγ : H → H1 defined 
in (8) can be decomposed in two operators Aγ : H1 → H1 and 
Bγ : Rnu → H1, controlling respectively the parts of the dynamics 
due to the state and to the control input. More precisely, defining
Aγ = Z∗

x (SS
∗
+ γ I)−1Sx, (12)

Bγ = Z∗

x (SS
∗
+ γ I)−1Su, (13)

the dynamics (11(b)) are equivalent to the autoregressive linear 
model 
zt+1 = Aγ zt + Bγut . (14)

3.3. Nyström approximation

Given that the lifted state z is typically infinite-dimensional, 
we are now interested in designing a finite-dimensional
approximation of the dynamics in (11(b)), which would be more 
useful for practical control purposes. In this section, we thus 
approximate the nonlinear kernel k using a Nyström approxima-
tion (Williams & Seeger, 2000). The approximation is based on 
the choice of two sets x̃in1 , . . . , x̃inm and x̃out1 , . . . , x̃outm  of m points, 
called the input and output landmarks. Multiple approaches have 
been studied for landmark selection, but in this paper we con-
sider the simple setting where the landmarks are either all 
drawn uniformly from the dataset, or the input landmarks are 
drawn uniformly from the dataset and the output landmarks 
are then taken one step ahead in time w.r.t. the input ones. 
Now, let us define H̃in := span{ψ(x̃in1 ), . . . , ψ(x̃inm)}, H̃out :=

span{ψ(x̃out1 ), . . . , ψ(x̃outm )}, and let Πin,x : H1 → H1,Πout,x :

H1 → H1 be the orthogonal projectors, respectively onto H̃in
and H̃out. Moreover, we define Πin : H → H as Πinφ(w) =[
Πin,xψ(x)

u
]
; as the control variable is already finite-dimensio-

nal, we indeed only need to project the lifted state in order 
to obtain a finite-dimensional approximation. Following Meanti 
4

et al. (2023), we define the Nyström approximation of Gγ  as 
follows:

G̃γ := arg min
W :H→H1

R(Πout,xWΠin) + γ ∥W∥
2
HS

= Πout,xZ∗

x (SΠinS∗
+ γ I)−1SΠin. (15)

The operator G̃γ  can be used to define linear dynamics approxi-
mating the ones from (14), namely for any initial condition x0 ∈

Rd: ⎧⎨⎩z̃0 = Πout,xψ(x0), (a)

z̃t+1 = G̃γ
[

z̃t
ut

]
. (b)

(16)

The projection in the initial condition guarantees that all the 
states visited during the evolution of the system belong to H̃out. 
The dynamics in (16(b)) are still linear in the control input, and 
the operator G̃γ  could be decomposed into operators (Ãγ , B̃γ ), 
approximating the operators (Aγ , Bγ ) defined in (12) and (13). We 
choose however to manipulate only G̃γ  in the following to keep 
expressions more concise.
Vector-valued representation. The dynamics in (16(b)) are de-
fined for evolving functions: despite being all restricted to a 
finite-dimensional subspace, the iterates (z̃t )t∈N still belong to 
a functional space. In order to retrieve a vector-valued state 
representation that is practically computable, we will thus look 
at the dynamics of the coordinates of these evolving functions in 
a basis of the subspace to which they belong. More precisely, we 
can define S̃out as 
S̃out : H1 → Rm, S̃outg = [g(x̃out1 ), . . . , g(x̃outm )]T . (17)

Note that Km,out :=S̃outS̃∗
out ∈ Rm×m is the Gram matrix of the 

stationary kernel k computed at the output Nyström centers x̃outi . 
Defining Uout,x = S̃∗

out(K
†
m,out)1/2, it holds Uout,xU∗

out,x = Πout,x.
Note that for any initial condition of the form (16(a)), the 

Nyström states z̃t defined by (16(b)) belong to H̃out for all t ∈ N. 
Thus, define z̃t as the solution of the following finite-dimensional 
autoregressive dynamics ⎧⎨⎩z̃0:= U∗

out,xψ(x0), (a)

z̃t+1=U∗
out,xZ

∗
x (SΠinS∗

+γ I)−1SΠin

[
Uout,xz̃t

ut

]
. (b)

(18)

Then, for 
z̃t := Uout,xz̃t , (19)

z̃t fulfills (16(a)) and (16(b)).
As we detail in Appendix  D, the dynamics (18(b)) can be 

rewritten in terms of matrix products that can be computed 
efficiently, and only requires to invert an m × m matrix. Note 
that the dynamics of z̃ could similarly be expressed in any or-
thonormal basis of H̃out, however working with Uout,x naturally 
yields expressions where the kernel matrix Km,out appears, which 
is convenient for implementation.

State reconstruction. The lifted state z̃ can be used to recon-
struct the original state x, as discussed in Brunton et al. (2022, 
Section 6). This goal can be achieved, e.g., by using a least-
squares estimate, or by augmenting the lifted state with the orig-
inal one. Here, we consider a regularized least squares estimate 
for the state reconstruction matrix C . For a given regularization 
parameter λ > 0, we define 

C = argmin
M∈Rd×m

1
n

n∑
i=1

∥xi+1 − M z̃i+1∥
2
2 + λ∥M∥

2
HS. (20)

A closed-form expression for matrix C is also included in Ap-
pendix  D. Note that the training control variables appear in (20) 
only through the definition of the dynamics, and it would also be 
possible to use instead an arbitrary dataset of sampled states.
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4. Kernels and Koopman LQR

Once we have estimated the state-space representation of the 
dynamical system of interest, we can use linear predictive control 
techniques, as the Koopman approach transforms a non-linear 
system in a linear one (Korda & Mezić, 2018). In the following, 
we focus on the LQR, and more particularly on the infinite horizon 
LQR (Mania et al., 2019) due to its theoretically appealing prop-
erties. The key idea is that the optimization problem at the basis 
of the LQR is rendered tractable by using a finite dimensional 
embedding of the state and inputs, which can be achieved by 
sketching techniques, as discussed in Section 3.
LQR for exact dynamics. We first consider using the exact kernel k
and the transformation φ. We consider a control objective that is 
quadratic in the lifted state and control inputs, via the weighting 
operators Q : H1 → H1 and R : Rnu → Rnu . Then, the LQR 
strategy requires to solve the following optimal control problem, 
for which a time-invariant analytical solution is available:

min
u0,u1,...

lim
T→∞

T∑
i=0

⟨zi,Qzi⟩H1 + ⟨ui, Rui⟩Rnu (21)

s.t. (11(a)), (11(b)).

LQR for approximated dynamics. When the dynamics are approx-
imated by using the Nyström approach as in (16(b)), the optimal 
control problem becomes

min
u0,u1,...

lim
T→∞

T∑
i=0

⟨z̃i,Q z̃i⟩H1 + ⟨ui, Rui⟩Rnu (22)

s.t. (16(a)), (16(b)).
According to (19), the problem in (22) can equivalently be rewrit-
ten in the basis Uout,x for weighting matrices Q̃ ∈ Rm×m, 

Q̃ = (K †
m,out)

1/2S̃outQ S̃∗

out(K
†
m,out)

1/2, (23)

and R, as follows:

min
u0,u1,...

lim
T→∞

T∑
i=0

⟨z̃i, Q̃ z̃i⟩Rm + ⟨ui, Rui⟩Rnu (24)

s.t. (18(a)), (18(b)).
Based on (23), problems (22) and (24) are equivalent, and yield 
the same optimal control sequence in form of state feedback
(Hager & Horowitz, 1976). Practically, one can choose Q̃ = C∗Q ′C
for some Q ′

: Rd
→ Rd, and C is the reconstruction matrix 

defined in (20) in order to define an objective that can be inter-
preted as a penalization of the states. Denoting the optimal gain 
resulting from (22) as K̃ : H1 → Rnu , the optimal control law is 
uk = K̃ z̃k. From (19), we have that the state-feedback input can be 
rewritten as uk = K̃Uout,xz̃k, with K̃Uout,x : Rm

→ Rnu  being the 
solution of the LQR problem in (24). When dealing with the true 
nonlinear dynamics in Section 6, we consider a state-feedback 
control law of the form 
uk = K̃Πout,xψ(xk), (25)

where xk is the true state of the system, to perform control in 
closed loop.
Overall pipeline. The content of this section can be summarized 
in a whole pipeline that can be used for linear identification 
and control of nonlinear systems. Such a pipeline consists of the 
following steps:

(1) sample Nyström input and output landmarks x̃in1 , . . . , x̃inm
and x̃out, . . . , x̃out uniformly from the training set;
1 m
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(2) compute the operators in (18(b)) to obtain a data-driven 
linear system;

(3) use these linear dynamics to solve problem (24) and get 
the optimal state-feedback gain.

5. Theoretical analysis

In this section, we perform a theoretical analysis of the pro-
posed system identification method, and assess its effect on the 
LQR problem. In particular, we will compare the Nyström-based 
approach with the data-driven model based on the exact kernel. 
Overall, we show that the Nyström-based model of (16(b)) is a 
provably accurate approximation of the dynamics in (11(b)), that 
can be safely used for control purposes, in place of the intractable 
infinite-dimensional model of (11(b)).
Layout. In Section 5.1, we state the assumptions at the basis of 
our analysis. In Section 5.2, we bound the error, introduced by 
the Nyström approximation, on operators Aγ  and Bγ  from (11(b)) 
(compound in the transition operator Gγ ). In Section 5.3, we show 
that the Riccati operator obtained with the Nyström dynamics 
is close to the one obtained with the exact kernel. Finally, in 
Section 5.4, we use the aforementioned results to show that, 
when plugging the optimal control from (22) into the dynamics 
of (11(b)), the LQR objective function is close to the one obtained 
when solving (21) directly.

5.1. Hypotheses

In this section, we introduce the hypotheses of our theoretical 
derivations in the next sections. 

Assumption 1 (Bounded Kernel).  The stationary kernel k is
bounded, i.e., there exists a positive constant κ < ∞ such that 
k(x, x′) ≤ k2 for any x, x′

∈ Rd.

Note that under Assumption  1, it holds in particular ∥Zx∥ ≤ κ
and ∥Sx∥ ≤ κ. Indeed, for any x, it implies ∥ψ(x)∥ =

√
k(x, x) ⩽ κ , 

and thus for any g ∈ H1 with ∥g∥ ⩽ 1, it holds
∥Zxg∥2 = n−1/2

∥[⟨g, ψ(x2)⟩, . . . , ⟨g, ψ(xn+1)⟩]T∥2

⩽ n−1/2

(
n+1∑
i=2

∥g∥
2κ2

)1/2

⩽ κ,

and a similar argument holds for Sx.
The following assumptions are standard and guarantee that 

the LQR problems in (21) and (22) are well-posed and admit 
an analytical solution in the form of a static state-feedback 
gain (Hager & Horowitz, 1976). Minimal assumptions on Aγ , Bγ
from (12) and (13), and C from (20), for stabilizability and de-
tectability to hold, could be derived by leveraging the theoretical 
deployments reported, e.g., in Bensoussan, Da Prato, Delfour, and 
Mitter (2007). 

Assumption 2 (Stabilizability, Hager and Horowitz (1976)).  The 
dynamical systems in (11(b)) and (16(b)) are stabilizable, i.e., ∃M :

H1 → Rnu  such that ρ(Aγ + BγM) < 1, and ∃M̃ : H1 → Rnu

 such that ρ(Ãγ + B̃γ M̃) < 1, where ρ(W ) is the spectral radius 
of operator W .

Stabilizability assumes that the dynamical systems can be 
driven to zero with a suitable state-feedback gain. This is a 
weaker assumption than controllability (i.e., assuming that the 
system can be driven to any location via the choice of suitable 
feedback gain), that is often used in the analysis of the LQR 
algorithm (Mania et al., 2019). However, the controllability as-
sumption in H1 is not satisfied by the Nyström dynamics, as the 
z̃ functions always live in the subspace H̃out, as we discussed in 
Section 3.3. 
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Assumption 3 (Detectability, Hager and Horowitz (1976)).  The 
dynamical systems in (11(b)) and (16(b)) are detectable, i.e.,
∃t, s, b, d ≥ 0 such that ∥At

γ z∥H1 ≥ b∥z∥H1

⇒

⟨
z,

s∑
i=0

Ai∗
γ QA

i
γ z

⟩
H1

≥ d ⟨z, z⟩H1 ,

∃t, s, b, d ≥ 0 such that ∥Ãt
γ z̃∥H1 ≥ b∥z̃∥H1

⇒

⟨
z̃,

s∑
i=0

Ãi∗
γ Q Ãi

γ z̃

⟩
H1

≥ d
⟨
z̃, z̃
⟩
H1
.

Detectability assumes that, if unstable dynamics happen in the 
linear system, these must be observed (and taken into account in 
the design of the LQR objective function).

Assumption 4.  Let Q , R be the weights of the LQR problem (21), 
and let P be a solution of the discrete algebraic Riccati equation 
P = A∗PA − A∗PB(R + B∗PB)−1B∗PA + Q . (26)

Then, σmin(P) ≥ 1.

As discussed by Mania et al. (2019), this technical assumption 
can be fulfilled by re-scaling Q  and R accordingly. Indeed, if P is 
a solution of (26), then ηP, η > 0 is also a solution, provided that 
Q  and R are multiplied by η.

5.2. Accuracy of the Nyström approximation of the transition oper-
ator

We now upper-bound the error (in operator norm) induced 
by the Nyström approximation on the transition operator Gγ . Al-
though other works studied sketched estimators of the Koopman 
operator, our bound notably differs from El Ahmad, Brogat-Motte, 
Laforgue, and d’Alché Buc (2024) and Meanti et al. (2023) who 
consider different norms (Hilbert–Schmidt and operator norm but 
on different spaces) and dynamical systems without control.

Theorem 5 (Convergence Rate for G̃γ − Gγ ). Under Assumption  1, 
for any γ > 0, it holds with probability 1 − δ that

∥G̃γ − Gγ ∥ ⩽

(
κ

γ
+

1
γ 1/2

)
4κ

√
3
m

log
(
8m
5δ

)
+

48κ3

γ 3/2

1
m

log
(
8m
5δ

)
. (27)

Proof.  The proof for this result is provided in Appendix  B.1. □

Note that, if we rewrite the approximate dynamics z̃t+1 =

G̃γφ(wt ) from (16(b)) in the autoregressive form as 

z̃t+1 = Ãγψ(xt ) + B̃γut , (28)

Theorem  5 automatically translates in bounds on the approxima-
tion of Aγ  and Bγ . Indeed, under the assumptions of Theorem  5, 
the right-hand side of (27) is also an upper bound on ∥Aγ − Ãγ ∥
and ∥Bγ − B̃γ ∥. Formally, the operators Ãγ , B̃γ  in (28) can be 
defined from G̃γ  as Ãγ = G̃γ [IH1 , 0H1→Rnu ]

∗
: H1 → H1 and 

B̃γ = G̃γ [0Rnu→H1 , IRnu ]
∗

: Rnu → H1. As a consequence, it holds 
∥Aγ − Ãγ ∥ = ∥(Gγ − G̃γ )[IH1 , 0H1→Rnu ]

∗
∥ ⩽ ∥Gγ − G̃γ ∥, and a 

similar argument holds for B.
In the following, we will use for simplicity the notations A :=

Aγ , B := Bγ , Ã := Ã, B̃ := B̃. However, all these operators 
implicitly depend on the choice of the regularization parameter 
γ .
6

5.3. Convergence analysis for the Riccati operator

In this section, we show that the Riccati operators for prob-
lems in (21) and (22) are ϵ-close in operator norm, provided that 
∥Gγ − G̃γ ∥ ≤ ϵ. Note that, according to Theorem  5, we can set 
ϵ as function of m, namely ϵ =

(
κ
γ

+
1

γ 1/2

)
4κ
√

3
m log

( 8m
5δ

)
+

48κ3

γ 3/2
1
m log

( 8m
5δ

)
. This fact means that we transfer the guaran-

tees for Gγ  from Section 5.2 to guarantees on the fundamental 
building block of the LQR solution, i.e., the Riccati operator.

Let

F (P, A, B)= P − A∗
[P − PB(R + B∗PB)−1B∗P]A − Q

= P − A∗P(I + BR−1B∗P)−1A − Q .

Then, as proven by Hager and Horowitz (1976, Theorem 9), under 
the assumptions in Section 5.1, the LQR problems in (21) and (22) 
admit analytical solutions given by the static state-feedback gains

K : H1 → Rnu , K = −(R + BTPB)−1B∗PA, (29)

K̃ : H1 → Rnu , K̃ = −(R + B̃T P̃ B̃)−1B̃∗P̃ Ã, (30)

where P, P̃ : H1 → H1 are the unique self-adjoint, positive semi-
definite operators obtained by solving the following discrete-time 
algebraic Riccati equations (Hager & Horowitz, 1976):

F (P, A, B) = 0, (31)

F (P̃, Ã, B̃) = 0. (32)

A fundamental step is now to derive an error rate for the solu-
tions, upper bounding the quantity ∥P − P̃∥. To do so, we can 
state and prove an analogous proposition to Mania et al. (2019, 
Proposition 2), based on the fundamental results in Konstanti-
nov, Petkov, and Christov (1993), and generalized to the case of 
operator dynamics.

Lemma 6 (Convergence Rate for P̃ − P).  Let the systems in (21) 
and (22) be stabilizable and detectable. Let σmin(P) be the smallest 
singular value of the Riccati operator associated to (21), and let P̃
be the Riccati operator for (22). Assume R is positive definite, and 
σmin(P) ≥ 1. Let L = A + BK , where K  is the stabilizing Riccati 
gain defined in (29), let ρ(L) be the spectral radius of L, and let 
τ (L, ζ ) = sup{∥Lk∥ζ−k, k ≥ 0}, with ζ  being a constant such that 
ρ(L) ≤ ζ < 1. Then, for ∥A − Ã∥ ≤ ϵ, ∥B − B̃∥ ≤ ϵ, and

ϵ < min {∥B∥,
1
12

1
(∥L∥ + 1)2 + (∥P∥ + 1)

(1 − ζ 2)2

τ (L, ζ )4

· (∥A∥ + 1)−2(∥P∥ + 1)−2

· (∥B∥ + 1)−3
· (∥R−1

∥ + 1)−2} ,
it holds that the error on the Riccati operator due to the Nyström 
approximation is upper bounded as follows:

∥P − P̃∥ ≤ 6ϵ
τ (L, ζ )2

1 − ζ 2
(∥A∥ + 1)2(∥P∥ + 1)2

· (∥B∥ + 1)(∥R−1
∥ + 1).

Remark 7.  When talking about stabilizability, we are considering 
the data-driven dynamics described by (11(b)) and (16(b)). This 
fact means that we assume these systems are stabilizable in H1, 
not in the original state space Rd.

Proof.  The proof of this result is close to the one of Mania et al. 
(2019, Proposition 2) which covers the setting where A and B are 
matrices. Some technical adjustments are required due to the fact 
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that we work with operators. We report a sketch of the proof in 
Appendix  C.5 □

5.4. Convergence analysis of the LQR objective function

In the previous subsections, we showed that ∥A − Ã∥ ≤ ϵ, 
∥B− B̃∥ ≤ ϵ for a sufficiently large number of Nyström landmarks 
m. We further showed that this implies that ∥P − P̃∥ ≤ O(ϵ). 
Now, we are interested in assessing how suitable the Nyström 
dynamics are for solving the LQR problem, instead of using the 
intractable, infinite-dimensional dynamics associated to an exact 
kernel. In order to do so, we first solve the LQR problem from 
(22) based on the Nyström approximation of the dynamics. Then, 
we plug the optimal control sequence retrieved in this way in the 
exact kernel dynamics of (11(b)), and compare the LQR objective 
function with this control sequence, and the control sequence we 
would obtained by solving the problem in (21). This type of error 
analysis resembles the one in Mania et al. (2019), in the context of 
certainty equivalence. In order to do so, let us define two control 
sequences (ũopt

0 , ũopt
1 , . . . ), and (uopt

0 ,uopt
1 , . . . ). Moreover, for a 

given initial condition ẑ0 = z0, let

J := lim
T→∞

T∑
i=0

⟨zi,Qzi⟩H1 + ⟨uopt
i , Ruopt

i ⟩Rnu ,

zi+1 = Azi + Buopt
i ,uopt

i = Kzi, (33)

Ĵ := lim
T→∞

T∑
i=0

⟨ẑi,Q ẑi⟩H1 + ⟨ũopt
i , Rũopt

i ⟩Rnu ,

ẑi+1 = Aẑi + Bũopt
i , ũopt

i = K̃ ẑi. (34)

Then, we upper bound the error Ĵ − J . 

Theorem 8 (Convergence Rate for Ĵ − J ).  Let z0 be the initial 
state of the dynamical system of interest. Let ρ(L) be the spectral 
radius of the closed-loop operator L = A + BK , where K is given 
by (29). Moreover, let J  be as in (33), and Ĵ  as in (34). Let ζ
be a real number such that ρ(L) ≤ ζ < 1. Lastly, let Γ =

1 + max{∥A∥, ∥B∥, ∥P∥, ∥K∥}. Under Assumptions  1, 2, and 3, if 
∥A − Ã∥ ≤ ϵ, ∥B − B̃∥ ≤ ϵ, assuming there exists some function g
such that ∥P − P̃∥ ≤ g(ϵ) for some value of ϵ chosen small enough 
so that g(ϵ) ≤

1−ζ
6∥B∥τ (L,ζ )Γ 2 , and σmin(R) ≥ 1, we have that

Ĵ − J ≤ 36σmax(R)Γ 9g(ϵ)2κ2 τ (L, ζ )
2

1 − ζ 2
.

Proof.  The proof of this result can be obtained by following the 
same steps of Mania et al. (2019, Theorem 1). Although deployed 
for A and B being matrices, these steps do not depend on the 
dimensionality of the state space, i.e., can be used also when con-
sidering function-valued dynamics, as we do in our work.4  We 
begin by computing an upper bound on the error for the Riccati 
gain ∥K−K̃∥. We then show that when this error is small enough, 
K̃  stabilizes the system with exact kernel defined in (11(b)). 
Lastly, we use (Fazel, Ge, Kakade, & Mesbahi, 2018, Lemma 10) 
to upper bound the error on the objective functions. □

Remark 9.  Considering the constants appearing in the bounds 
of this section, they can be interpreted as follows: κ is the upper 
bound on the kernel function’s values, i.e., the kernel variance; γ , 
which is the regularization weight, could be heuristically tuned 
based on the variance of the noise affecting the system in (1). δ

5 The full derivation of the result can be found at https://github.com/LCSL/
nys-koop-lqr/tree/main/proofs.
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should in principle be chosen to be as small as possible, as our 
bound in Theorem  5 holds with probability at least 1 − δ. The 
other constants (e.g., the norms of the learned operators) depend 
on the data used for training.

6. Simulation results

In this section, we propose a numerical validation of the 
Nyström-based system identification and the subsequent LQR 
algorithm discussed in the previous sections. We will start in 
Section 6.1 with a proof-of-concept evaluation of the control 
law retrieved by our Nyström-based approach, on the nonlinear 
dynamics with known optimal control discussed in Guo, Houska, 
and Villanueva (2022). Then, we will consider the Duffing oscil-
lator in Section 6.2, and we will study the application of cloth 
manipulation in Section 6.3.

In all our case-studies, the kernel lengthscale and the regular-
ization parameters are determined with a grid search combined 
with 5-fold cross validation. For simplicity, we use the same 
regularization parameter for the estimate of the dynamics and the 
state reconstruction, i.e. λ = γ .

6.1. Proof-of-concept dynamics

In this section, we assess how the control law defined by (25), 
denoted as u, compares to the known optimal control utrue, opt
for an illustrative single-input dynamical system. This simulation 
serves as a proof-of-concept to show that the proposed control 
law, retrieved by an LQR-based methodology, is not too far from 
the true optimal control. The continuous dynamics defined in the 
following are discretized with the Runge–Kutta method.

We consider the nonlinear dynamics studied by Guo et al. 
(2022): 
ẋ = −x3 + u. (35)

The known optimal control, for Q = 1 and R = 1, stabilizing the 
origin is utrue, opt

= x3 − x
√
1 + x4. In the simulation, we started 

at x0 = 0.9. The Nyström-based system was defined using the 
Matérn-5/2 kernel with lengthscale equal to 1 (i.e. k(x, y) := (1+√
5r + 5r2/3) exp(−

√
5r) where r = ∥x− y∥), and regularization 

constant equal to 10−6. It was trained with 20 trajectories of 
length 2 s, with a sampling time of 0.01 s. The initial states for 
the training trajectories, and ut were uniformly sampled from 
[−1, 1]. The Nyström-based LQR is solved with Q = CTC and 
R = 1. Given the size of the training dataset, we further compare 
both the Nyström-based control law and the true optimal control 
with the exact kernel dynamics from (11(b)). Note that the latter 
induces states belonging to ran(Zx), hence when starting from 
an initial state in ran(Zx) it can be seen as a special case of the 
Nyström dynamics (16(b)) by taking Πin = I , and choosing m = n
and x̃out1 = x2, x̃outm = xn+1 in the definition of S̃out. By doing so, 
we get zt+1 = (ZxZ∗

x )
1/2(SS∗

+ γ I)−1S
[

Z∗
x [(ZxZ∗

x )
†
]
−1/2zt ,

ut

]
, and 

z0 := U∗
out,xψ(x0).

Besides computing the infinite-horizon LQR cost, we assess the 
distance between the two control laws with this key performance 
indicator: RMSEu

% =

√∑200
t=1(ut − utrue, opt

t )2/
∑200

t=1(u
true, opt
t )2·100.

As shown in Fig.  2(a), the retrieved control law is close to the 
optimal one, achieving a final median RMSEu

% of approximately 
13%, both for the exact and for the Nyström kernel. A qualitative 
comparison of the control laws involved in this simulation is 
offered in Fig.  2(b). Fig.  2(c) shows the optimal and data-driven 
control laws as a function of the state x ∈ [−1, 1] of system (35). 
Even though the data-driven control laws have an error w.r.t. the 
optimal one near the boundaries of the training domain, Fig.  2(b) 
shows that convergence to the true optimal control law happens 

https://github.com/LCSL/nys-koop-lqr/tree/main/proofs
https://github.com/LCSL/nys-koop-lqr/tree/main/proofs
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Fig. 2. (a): Evaluation of the error between the control law defined in (25) and the true optimal control for the system in (35). Median, 15th and 85th percentile 
computed across 200 seeds. (b): A qualitative visualization of the optimal control retrieved, for m = 100. (c): A comparison between the true optimal control, the 
one defined in (25), and its version obtained with an exact kernel, on the state space of the system (35), for m = 100. For the Nyström approach, we show median, 
15th and 85th percentile computed across 200 seeds.
Fig. 3. (a): RMSE% between the true trajectory and the one forecasted in open-loop for the Duffing oscillator, with three different feature representations (splines, 
eigenfunction approximation by Korda and Mezić (2020), and Nyström approximation of the Matérn-5/2 kernel), as a function of the dimensionality of the feature 
vector, m. Median, 15th and 85th percentile computed across 200 test trajectories with random initial conditions from the unit ball. (b)–(c): The LQR control strategy 
to stabilize towards the origin, with m = 20, starting from the initial conditions [−0.5, 0.0]T . Most importantly, when the splines are used, in 2 cases the LQR gain 
yields unstable nonlinear dynamics (not included in the percentile range). Median, 15th and 85th percentile computed across 200 seeds.
Table 1
Infinite-horizon LQR costs for data-driven and optimal control 
laws, on proof-of-concept dynamics (35) (for the Nyström approx-
imation we show median, 15th and 85th percentiles across 200 
seeds).
 Cost of (25), Nystr. m = 10 57.12, 57.00, 58.19 
 m = 50 57.10, 57.05, 57.10 
 m = 100 57.10, 57.09, 57.10 
 Cost of (25), exact ker. 57.10  
 Cost of opt. ctrl. 56.74  

fast even when starting in those regions (e.g., for x = 0.9). 
Lastly, Table  1 compares the infinite-horizon LQR cost achieved 
by the control law in (25), and by the optimal control for the task 
considered. 

6.2. Duffing oscillator

We now consider a classic benchmark for nonlinear control, 
namely the damped Duffing oscillator (Korda & Mezić, 2020). The 
nonlinear dynamics are defined in continuous time domain and 
given by the following differential equations: 
ẋ1 = x2, ẋ2 = −0.5x2 − x1(4x21 − 1) + 0.5u. (36)

Similarly to Korda and Mezić (2020), the dynamics are discretized 
with the Runge–Kutta method to obtain a difference equation of 
the form of (1), with a discretization step of 0.01 s. For u = 0, 
this dynamical system is known to have an unstable equilibrium 
point at the origin, and two stable equilibria at [−0.5, 0]T  and 
[0.5, 0]T . The training set consists of 100 trajectories of length 
5 s and without forcing, and 100 trajectories of length 2 s with 
forcing, all staring from inside the unit ball around the origin. 
For the forced data, the system is excited with inputs sampled 
uniformly at each time step from the interval [−1, 1].

Firstly, we are interested in assessing how well the Nyström-
based dynamics in (18(b)) approximate the ones of the true 
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dynamical system in (36). To do so, we test the open-loop forecast 
of the dynamics subject to a square wave with unitary amplitude 
and frequency 3.33 Hz, starting from a random initial condition 
in the unit ball. This means that we excite the data-driven model 
of (16(b)) with the square wave, reconstruct the state via matrix 
C from (20), and compare the states reconstructed using C against 
the states visited by the true nonlinear dynamics. The length of 
the open-loop forecast is set to 2 s. The results can be observed 
in Fig.  3(a). The Nyström identification is compared against the 
splines introduced in Korda and Mezić (2018), with centers sam-
pled uniformly at random from the unit circle, and against the 
eigenfunction-based method by Korda and Mezić (2020). For the 
latter approach, we opted for the implementation without opti-
mization of the eigenvalues, which is more robust for large values 
of m, and practically equivalent to the one with optimization, 
based on the empirical evaluation carried out in Korda and Mezić 
(2020). The Nyström identification uses a Matérn-5/2 kernel, 
which seems empirically to perform better than other Matérn or 
RBF kernels in this setting. The lengthscale and variance are set 
to 1 by cross-validation . We set γ = 10−6. Both the splines 
and the Nyström approach use the same samples for approx-
imating the input and output spaces. The Nyström landmarks 
are sampled uniformly at random from the output training set. 
We consider the normalized root-mean-squared error (RMSE) 
between the actual states x and the forecasted ones x̃, defined 
as RMSE% =

√
[
∑2

i=1
∑200

k=1(x̃i,k − xi,k)2]/[
∑2

i=1
∑200

k=1 x
2
i,k] · 100,

where xi,k denotes the ith dimension of the state at time step k. 
We can observe that all the representations converge in median 
to the same minimum error, but the Nyström method yields a 
smaller error when a few landmarks are used. Moreover, we can 
observe that the approach in Korda and Mezić (2020) suffers from 
a much larger variance, probably due to the short horizon of 
the unforced training trajectories employed (w.t.r. to 8 s used 
in Korda & Mezić, 2020).

The goal of the control strategy is to stabilize the system 
towards the origin [0, 0]T , starting from the initial condition 
[−0.5, 0.0]T , for m = 20. As discussed in Section 4, the op-
timal LQR gain is retrieved by solving (24), and the optimal 
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Fig. 4. An example trajectory of the left and right lower corners of the cloth 
in the y-z plane. The circle denotes the starting position, while the triangle the 
final one..

state-feedback law uk = K̃Πout,xψ(xk) is plugged in (36). The R
weighting matrix is set to the identity, while Q̃ = CTC , where 
C is obtained by solving (20) both with the Nyström and the 
splines features. The values of the states x1 and x2 as a function 
of time, for a state-feedback control, are shown in Figs.  3(b)
and 3(c). We can observe that the Nyström representation yields 
a better behavior of the closed-loop system, especially when 
considering the stabilization of the first state of the oscillator. 
Note that the method reported in Korda and Mezić (2020) builds 
a complex-valued data-driven system, which would yield to a 
complex-valued Riccati gain and control input. While it is cer-
tainly possible to project the complex-valued LQR-based control 
law retrieved in this way to be a real-valued signal, we ob-
served in preliminary experiments that such a control law yields 
a suboptimal behavior, such as steady-state errors. Note that this 
issue is circumvented by Korda and Mezić (2020), who directly 
constrain the control to be a real-valued signal, and solve such an 
optimal control problem online with a model predictive control 
loop.

6.3. Cloth manipulation

Cloth manipulation is arguably one of the most active and 
challenging fields in robotic manipulation. Recent work has tried 
to address this problem in a model-based fashion, proposing 
approximate, data-driven methods that can identify the dynamics 
of cloth, and then combine such approximate models with real-
time predictive controllers (Amadio et al., 2023; Luque et al., 
2024; Zheng et al., 2022). Similarly to Amadio et al. (2023), in 
this work we consider a squared piece of cloth, modeled based 
on the simulator deployed by Coltraro et al. (2022). The training 
dataset is created by moving the upper corners of the cloth in a 
butterfly-like shape in the y-z plane (see Fig.  4), with different 
angles w.r.t. the x-y plane. The angle is sampled from the interval 
[−60◦, 60◦

].6 The goal is to identify the cloth dynamics in this 
setup. The cloth is modeled as a square 8 × 8 mesh. The state 
is represented by the 3-dimensional position of the mesh points, 
and the control input is given by the variation in position of the 
upper corners. The control input is in R6, while the state is in 
R192. The sampling time is equal to 0.05 s.

We first assess the performance of the proposed approxi-
mate kernel-based identification on this dataset. In particular, 
the training set consists of 30 trajectories randomly sampled 
from a total of 40. The length of the trajectories is 5 s, and the 
sampling time is 0.05 s. We test the open-loop system fore-
casts in the remaining ten testing scenarios. We compare the 
Nyström approximation of the RBF kernel against the thin plate 
splines employed by Korda and Mezić (2018). Note that, in Ko-
rda and Mezić (2018) and in Section 6.2, the feature vector 
contains elements of the form ∥x − x0∥2 log ∥x − x0∥, for x0 be-
ing a center sampled uniformly from a box in Rd. However, 

6 We refer the interested reader to Figs. 4 and 5 by Amadio et al. (2023) for 
a clear visualization of the task considered here.
9

given the extremely large dimensionality of the cloth’s state-
space representation, the centers sampled in this way might 
be quite far from the real cloth configurations visited during 
the trajectories. We observed, in preliminary experiments, that 
this unbounded distance between centers and training points 
yields a highly numerically unstable behavior of splines for m ≥

200. For this reason, we propose to sample the splines’ centers 
uniformly at random from the training data, making splines com-
petitive for large values of m as well. Similarly, the Nyström 
landmarks are sampled uniformly at random from the output 
training set. The RBF kernel lengthscale is set to 10 and γ  to 
10−7 by cross-validation. A comparison is offered in Fig.  5(a), 
showing the unnormalized RMSE on the testing trajectories. While 
both feature representations converge to the same RMSE, the RBF 
representation converges faster and leads to a smaller error in the 
low-feature regime. Also, note that, given the high dimensionality 
of the state space, in this case the feature transformation can be 
seen as a dimensionality reduction technique.

In order to use an LQR approach, we define the control goal 
as moving the cloth to a target pose. Such a pose is given by 
the initial pose, rotated by 45◦ about the upper corners. This 
simulation captures how well the Koopman models the cloth’s 
deformations, which can be used in fast, dynamic motions. In 
this case, the number of Nyström landmarks and spline centers 
is set to 100. Moreover, Q̃ = 0.0075CTC , and R is the identity 
matrix of suitable dimensions. As we can observe in Fig.  5(b), the 
Nyström method improves the regulation error, getting closer to 
the target pose. The better performance of the Nyström features 
is confirmed by Fig.  5(c). There, we can observe that the cloth 
gets closer to the target in a shorter amount of time. Note that 
due to gravity and to the deformable nature of cloth, the cloth 
will not stay in the target pose once reached, which is why the 
RMSE increases again for both methods after reaching the target. 
After the target is reached, we observe that the system enters a 
stable limit cycle with an RMSE at around 19 cm for the Nyström 
approach, and 18 cm for the splines. In this cycle, the cloth 
oscillates around a vertical position that is closer to the target 
one than the initial pose, for which the RMSE is approximately 
30 cm. The limit cycle can be visualized, for instance, in Fig.  6.

As a final assessment, we can consider the following averaged 
running cost computed on the true nonlinear dynamics: 

C =
1

Tmax

Tmax∑
t=0

0.0075(xt − r)T (xt − r) + uT
t ut , (37)

where r is the target state, Tmax = T s/0.05 s, T is a variable 
time horizon, 0.05 s is the sampling time, and ut is the control 
from (25), computed with splines or the Nyström features. This 
metric is related to the infinite-horizon LQR cost used to retrieve 
the state-feedback gain, since Q̃ = 0.0075CTC , and xt ≈ C z̃t (z̃
indicating either the Nyström or the splines features). Considering 
this metric, we observe in Fig.  7 that the Nyström features yield 
a consistently smaller cost than splines. 

7. Conclusions

In this paper, we have studied the combination of the Koop-
man operator framework with reproducing kernels and the Nys-
tröm method, to design linear control for nonlinear dynamical 
systems. In a novel theoretical analysis, we have linked novel 
error rates, due to the Nyström approximation, on the dynami-
cal system’s representation to its effect on the linear quadratic 
regulator problem. Lastly, we have evaluated the effectiveness of 
the proposed method both on two classic control benchmark, and 
on the task of dynamic cloth manipulation.
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Fig. 5. (a): the RMSE computed between the true cloth trajectory and the one forecasted in open loop, with two different feature representations (splines vs. Nyström 
approximation of the RBF kernel). Median, 15th and 85th percentile computed across 10 testing trajectories, sampled with 20 different seeds. (b): regulation error 
between the target pose of the cloth and the actual one. Median, 15th and 85th percentile computed across 50 seeds. (c): Scatter plot showing the time needed by 
each simulation of the cloth experiment to reach the minimum distance from the target.
Fig. 6. An illustrative example of the components of the control signal, for the cloth manipulation simulation. After approaching the target, the system enters a 
stable limit cycle. The elements in the pair (ui, ui+1) are identical. This is because, for each coordinate, the training controls (which are the variations in position of 
the upper cloth’s corners) are the same for the left and the right corner, as exemplified in Fig.  4. This bias is reflected in the trajectory obtained using the LQR gain.
Fig. 7. Cost (37) as a function of the horizon Tmax ..
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Appendix A. Closed form for Gγ

We recall that we defined the risk in (9) as R(W ) :=
1
n

∑n
i=1

∥ψ(xi+1) − Wφ(wi)∥2
H1
.

Expression of the risk. For any orthonormal basis (gj)j∈N of H1, it 
holds

R(W )
10
=
1
n

n∑
i=1

⎡⎣∑
j∈N

⟨
gj, ψ(xi+1) − Wφ(wi)

⟩2
H1

⎤⎦
=

1
n

∑
j∈N

[
n∑

i=1

(⟨
gj, ψ(xi+1)

⟩
H1

−
⟨
W ∗gj, φ(wi)

⟩
H

)2]

=
1
n

∑
j∈N

∥
√
nZxgj −

√
nSW ∗gj∥2

Rn

=
Zx − SW ∗

2
HS.

Expression of Gγ . Recall Gγ = argminW :H→H1
R(W ) + γ ∥W∥

2
HS. 

Computing the gradient of R(W ) gives ∂R(W )
∂W = −2Z∗

x S +2WS∗S.
The first-order optimality condition with additive Tikhonov reg-
ularization leads to 
Gγ (S∗S + γ I) = Z∗

x S,

Gγ = Z∗

x S(S
∗S + γ I)−1. (A.1)

This gives the expression claimed in (10) by applying the Wood-
bury identity.

Appendix B. Convergence rate for G̃γ − Gγ

We prove here the convergence rate for G̃γ − Gγ  given in 
Theorem  5, using bounds on the Nyström approximation derived 
in Appendix  B.2.

B.1. Proof of Theorem  5

Via (10) and (15), denoting Hγ = SS∗
+ γ I the (weighted) 

regularized kernel matrix, it holds
Gγ = Z∗

xH
−1
γ S, G̃γ = Πout,xZ∗

x H̃
−1
γ SΠin,

where H̃−1
γ := (SΠinS∗

+γ I)−1. In particular, we can observe that 

∥G̃γ − Gγ ∥ ⩽ ∥Z∗

xH
−1
γ S(I −Πin)∥

+ ∥Z∗

x (H
−1
γ − H̃−1

γ )SΠin∥

+ ∥(I −Πout,x)Z∗

x H̃
−1
γ SΠin∥. (B.1)
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The first addend can be split as follows: 

∥Z∗

xH
−1
γ SΠ⊥

in∥ ⩽ ∥Z∗

xH
−1
γ ∥∥SΠ⊥

in∥ ⩽
κ

γ
∥SΠ⊥

in∥. (B.2)

By leveraging the identity A−1
− B−1

= A−1(B − A)B−1 for two 
invertible operators A and B, the second addend in (B.1) can be 
bounded as
∥Z∗

x (H
−1
γ − H̃−1

γ )SΠin∥= ∥Z∗

xH
−1
γ (SΠinS∗

− SS∗)H̃−1
γ SΠin∥

⩽
κ

γ
∥Π⊥

in S
∗
∥
2
∥H̃−1

γ SΠin∥.

Note that, using a polar decomposition, SΠin = (SΠinS∗)1/2U for 
some partial isometry U , and thus
∥H̃−1

γ SΠin∥ ⩽ ∥(SΠinS∗
+ γ I)−1/2

∥

·∥(SΠinS∗
+ γ I)−1/2(SΠinS∗)1/2∥

⩽ γ−1/2, (B.3)

so that 
∥Z∗

x (H
−1
γ − H̃−1

γ )SΠin∥ ⩽
κ

γ 3/2 ∥Π⊥

in S
∗
∥
2. (B.4)

Eventually, using again (B.3) the third addend in (B.1) can be 
bounded as
∥Π⊥

out,xZ
∗

x H̃
−1
γ SΠin∥ ⩽ ∥Π⊥

out,xZ
∗

x ∥∥H̃−1
γ SΠin∥

⩽ γ−1/2
∥Π⊥

out,xZ
∗

x ∥. (B.5)

Putting together (B.2), (B.4) and (B.5), we get ∥G̃γ − Gγ ∥ ⩽
κ
γ
∥Π⊥

in S
∗
∥ +

κ

γ 3/2 ∥Π⊥

in S
∗
∥
2
+ γ−1/2

∥Π⊥
out,xZ

∗
x ∥.

We recall that Πin =

[
Πin,x 0
0 I

]
, so that ∥Π⊥

in S
∗
∥ =

∥Π⊥

in,xS
∗
x∥, and both terms ∥Π⊥

in,xS
∗
x∥ and ∥Π⊥

out,xZ
∗
x ∥ can be

bounded using Lemma  11, which is itself derived from Rudi et al. 
(2015). We thus get

∥G̃γ − Gγ ∥ ⩽

(
κ

γ
+

1
γ 1/2

)
4κ

√
3
m

log
(
8m
5δ

)
+

48κ3

γ 3/2

1
m

log
(
8m
5δ

)
. (B.6)

B.2. Error induced by the Nyström approximation

The following lemma is a restatement of Rudi et al. (2015, 
Lemma 6) with slightly different constants. Albeit being originally 
written in a random design scenario, the same result holds when 
conditioning on the data. In the following, we denote ⊗ the outer-
product in H1, i.e. the rank-one operator defined as (a ⊗ b)c =

⟨b, c⟩H1a. 

Lemma 10.  Let x1, . . . , xn ∈ Rd and denote C =
1
n

∑n
i=1 ψ(xi) ⊗

ψ(xi), where ψ is the canonical feature map associated to a kernel 
satisfying Assumption  1. Let x̃1, . . . , x̃m be drawn uniformly from 
all partitions of cardinality m of {x1, . . . , xn}. Denoting Πm the 
orthogonal projection onto span(ψ(x̃1), . . . , ψ(x̃m)), for any γ ∈

]0, ∥C∥], it holds ∥(I − Πm)(C + γ I)1/2∥2 ⩽ 3γ , with probability 
at least 1 − δ provided m ≥ (2 + 5 κ

2

γ
) log

(
4κ2
γ δ

)
.

Proof.  We apply exactly the same proof as in Rudi et al. (2015, 
Lemma 6) but conditioning on the data (i.e., in particular apply-
ing Rudi et al., 2015, Prop. 8 with the vi drawn i.i.d. according to 
the empirical distribution and Q  being the empirical covariance), 
with N∞(γ ) = κ2/γ . Denoting w = log

(
4k2
γ δ

)
, we end up with 

the bound ∥(I − Π )(C + γ I)1/2∥2 ⩽ γ
, where β(γ ) ⩽
m 1−β(γ )

11
2w
3m +

√
2wk2
γm . We now derive slightly better constants than in the 

original lemma in order to satisfy β(γ ) ⩽ 2/3 (which gives the 
claimed result). Indeed, β(γ ) ⩽ 2/3 ⇔ m −

3
2

√
2wk2
γ

√
m − w ⩾

0. We solve this inequality as a second-order equation in 
√
m, 

with discriminant ∆ = w( 9k
2

2γ + 4), which is positive whenever 
γ < 4k2δ−1. A sufficient condition to satisfy β(γ ) ⩽ 2/3 is thus 
m ⩾

(
3
4

√
2wk2
γ

+
1
2

√
w( 9k22γ + 4)

)2
. Using the identity 2(a2+b2) ⩾

(a + b)2, we get the sufficient condition m ⩾ w
(
5 k2
γ

+ 2
)
. □

Lemma 11.  Under Assumption  1, provided that Πin,x and Πout,x
are built by sampling uniformly m samples respectively from
{x1, . . . , xn} and {x2, . . . , xn+1}, it holds with probability 1 − δ

max(∥Π⊥

in,xS
∗
x∥, ∥Π

⊥
out,xZ

∗
x ∥) ⩽ 4κ

√
3
m log

( 8m
5δ

)
.

Proof.  Using a polar decomposition and applying Lemma  10 with 
m ⩾ (2 + 5 κ

2

γ
) log

(
4κ2
γ δ

)
, it holds

∥Π⊥

in,xS
∗

x∥ = ∥Π⊥

in,x(S
∗

xSx)
1/2

∥ (B.7)

⩽ ∥Π⊥

in,x(S
∗

xSx + γ I)1/2∥ ⩽
√
3γ , (B.8)

and a similar argument holds for ∥Π⊥
out,xZ

∗
x ∥.

The condition m ⩾ (2+5 κ
2

γ
) log

(
4κ2
γ δ

)
 is in particular satisfied 

provided that m/2 ⩾ max(2, 5 κ
2

γ
) log

(
4κ2
γ δ

)
, which holds taking 

γ =
16κ2
m log( 4m5δ ). This yields the claimed result via a union 

bound. □

Appendix C. Proof sketch for Lemma  6

Let L = A+BK  be the closed-loop operator of the system speci-
fied by (11(b)), where K  is the stabilizing gain defined in (29). The 
proof of the result, which closely follows the proof of Mania et al. 
(2019, Proposition 2), starts by defining a set S of perturbations of 
the Riccati operator P as S = {X : H1 → H1, X = X∗, P + X ≽ 0}.
Then, we can derive a fixed-point operator equation 
X = ΦX, (C.1)

where ΦX = T −1
[F (X + P, A, B) − F (X + P, Ã, B̃) − RX], T X =

I − L∗XL, and RX = L∗X[I + B∗PB(P + X)]−1B∗PBXL. Let us define 
L(H1) as the space of continuous linear operators from H1 to H1, 
and L(L(H1)) as the space of continuous linear operators from 
L(H1) to L(H1). The operator T : L(H1) → L(H1) is invertible in 
L(L(H1)). This fact can be proven by showing that 1 is not in the 
spectrum of operator D : L(H1) → L(H1), defined as DX = L∗XL. 
This is achieved by upper bounding the spectral radius of D by 
means of Gelfand’s formula, and by observing that the closed-
loop dynamics are stable, i.e., L has spectral radius smaller than 
1. Moreover, T −1 is bounded. This can be proven by showing 
that the Neumann series 

∑
∞

k=0 D
k is absolutely convergent in 

operator norm, and therefore equal to T −1. Then, it can be shown 
that the unique solution of (C.1) belonging to S is P̃ − P , since, 
by construction of the fixed point equation, it must hold F (X +

P, Ã, B̃) = 0.
We can now define the following closed subset of S , Sν = {X :

∥X∥ ≤ ν, X = X∗, P + X ≽ 0}. Let ∥Ã − A∥ ≤ ϵ, ∥B̃ − B∥ ≤ ϵ, 
where ϵ is the error rate in Theorem  5. Let N := BR−1B∗. If we 
pick

ν = min
{
∥N∥

−1,
1
2
,6 ϵ

τ (L, ζ )2

1 − ζ 2
(∥A∥ + 1)2(∥P∥ + 1)2

·(∥B∥ + 1)(∥R−1
∥ + 1)

}
,
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for X, X1, X2 ∈ Sν , we can show that ΦX ∈ Sν , and ∃η < 1 such 
that ∥ΦX1 − ΦX2∥ ≤ η∥X1 − X2∥, that is, Φ is a contraction op-
erator. Then, we can apply Banach fixed-point theorem, meaning 
that the self-adjoint fixed point P̃ − P of Φ belongs to Sν , i.e., the 
error on the Riccati operator due to the Nyström approximation 
has bounded operator norm as a function of ϵ.

Appendix D. Computable expression for Nyström vector dy-
namics and C

In this appendix, we report the computable expression for the 
operator appearing in (18(b)), as well as the expression of the 
reconstruction matrix C in (20). They are the formulas used in 
practice for the implementation of the method. To simplify the 
notation, for operators M,N , we denote a block-diagonal operator 
as B(M,N) =

[ M 0
0 N

]
. We introduce the following additional 

notation. In the sequel we refer to the nonlinear kernel k:
• Knm,out is the kernel between the regression outputs and the 

output landmarks;
• Knm,in is the kernel between the regression inputs (state 

only) and the input landmarks;
• Km,in is the kernel at the input landmarks;
• Km,in,out is the kernel between the input landmarks and the 

output landmarks.
Let us define the sampling operator for the input Nyström 

landmarks as S̃in : H1 → Rm, S̃ing = [g(x̃in1 ), . . . , g(x̃
in
m)]

T . Note 
that ran(S̃∗

in) = H̃in. We denote S̃in = UΣV ∗ its singular value 
decomposition, where U : Rt

→ Rm, Σ : Rt
→ Rt , V : Rt

→ H̃1. 
Here, Σ is diagonal and strictly positive. It holds Πin = B(VV ∗, I)
and thus 
U∗

out,xZ
∗

x (SΠinS∗
+ γ I)−1SB(Πin,xUout,x, I)

= U∗

out,xZ
∗

x SB(S̃
∗

in, I)B(UΣ
−1, I)

·
(
B(V ∗, I)S∗SB(V , I) + γ I

)−1

· B(Σ−1U∗, I)B(S̃in, I)B(Uout,x, I).

 Now, we can observe that V ∗V = I . Moreover, (B(V ∗, I)S∗SB(V , I)
+γ I) is full-rank, B(UΣ−1, I) is full column-rank and B(Σ−1

U∗, I) is full row-rank, then by Ben-Israel and Greville (2003, 
Section 1.6) we have that 

B(UΣ−1, I)
(
B(V ∗, I)S∗SB(V , I) + γ I

)−1
B(Σ−1U∗, I)

=

(
B(S̃in, I)S∗SB(S̃∗

in, I) + γB(S̃inS̃∗

in, I)
)†
.

 This yields 
U∗

out,xG̃γB(Uout,x, I)

= (K †
m,out)

1/2Kmn,out

[
Knm,in

√
nSu

]
·

([ Kmn,in√
nSTu

][
Knm,in

√
nSu

]
+γ nB(Km,in, I)

)†

· B(Km,in,out(K
†
m,out)

1/2, I).

 Moreover, having stacked the regression outputs in a matrix 
X+1 ∈ Rd×n, the matrix C from (20) takes the form C =

X+1Knm,out(Kmn,outKnm,out + λnKm,out)−1K 1/2
m,out.
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