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Abstract: Heteroscedastic Gaussian processes (HGPs) are kernel-based, non-
parametric models that can be used to infer nonlinear functions with time-varying
noise. In robotics, they can be employed for learning from demonstration as mo-
tion primitives, i.e. as a model of the trajectories to be executed by the robot.
HGPs provide variance estimates around the reference signal modeling the tra-
jectory, capturing both the predictive uncertainty and the motion variability. How-
ever, similarly to standard Gaussian processes they suffer from a cubic complexity
in the number of training points, due to the inversion of the kernel matrix. The un-
certainty can be leveraged for more complex learning tasks, such as inferring the
variable impedance profile required from a robotic manipulator. However, suit-
able approximations are needed to make HGPs scalable, at the price of potentially
worsening the posterior mean and variance profiles. Motivated by these obser-
vations, we study the combination of HGPs and random features, which are a
popular, data-independent approximation strategy of kernel functions. In a the-
oretical analysis, we provide novel guarantees on the approximation error of the
HGP posterior due to random features. Moreover, we validate this scalable motion
primitive on real robot data, related to the problem of variable impedance learning.
In this way, we show that random features offer a viable and theoretically sound
alternative for speeding up the trajectory processing, without sacrificing accuracy.

Keywords: Gaussian process regression, random features, motion primitives.

1 Introduction
Learning from demonstration (LfD) is a broadly used technique to transfer skills from humans to
robots in a flexible and intuitive way [1]. Within the context of robotics manipulation, LfD consists
of recording the movement of an arm performing a specific task multiple times. This data is then
used to fit a model of the trajectory, called a motion primitive in this context, which allows the
robot to reproduce the skill of interest. One popular way to achieve this objective is by means
of the so-called Gaussian process (GP) regression [2]. Being a Bayesian model, a GP naturally
provides a time-varying reference signal to be followed by the robot (the GP posterior mean), and
an uncertainty quantification (the GP posterior variance) around the reference signal.

When used for LfD, GPs are usually heteroscedastic (HGP), i.e., the variance of the noise corrupting
the recorded trajectories is not constant [3, 4]. As discussed by Arduengo et al. [5], such a time-
varying noise variance is a key asset for modeling motion variability when HGPs are used as motion
primitives. The inconsistency of the human demonstrations, captured by the time-dependent noise
variance, is a form of epistemic uncertainty that is intrinsic to the task, i.e., it cannot be resolved by
increasing the number of human demonstrations. Moreover, the HGP posterior variance quantifies
the input-dependent uncertainty on the predictions, which is relevant when the testing points are far
from the training data due to gaps in the human demonstrations.
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Figure 1: The tasks involved in our experiments. In the first two pictures, the human is guiding the
robot to perform: a free motion above a metal piece; the insertion of the end-effector in the trail
inside the piece. In the last picture, the robot is pulling a bed sheet to remove the wrinkles.

While being attractive for the aforementioned reasons, GP regression suffers from a cubic scaling
in the number of training samples as it requires an inversion of the kernel matrix. For this reason,
several approximation techniques have been deployed, that allow for a linear scaling in the number
of observations. In particular, these approximations can be grouped into variational ones and the
spectral ones. The former methods are data-dependent and rely on a variational approximation
of the posterior distribution of the GP [6, 7, 8]. Spectral approximations, on the other hand, are
most often data-independent, and can rely, e.g., on polynomial approximations [9, 10], a truncation
of the kernel’s spectrum [11], or a randomized approximation of an integral representation of the
kernel function. The latter technique includes the well known random features (RFs) [12], that have
successfully been used for GPs approximation [13, 14, 15, 16, 17]. In order to achieve a satisfactory
model of the trajectory of interest, these approximations should not deteriorate the posterior mean
and variance as these quantities fully specify the robot’s motion; when such guarantees can be
rigorously obtained, approximate GPs become an appealing motion primitive [11, 18, 19].

Contributions In this work, we study the combination of vector-valued HGPs with RFs for fast
trajectory processing in LfD. In order to assess the reliability of the approximation scheme, we
perform a theoretical analysis and propose novel bounds on the approximation error of the posterior
mean and variance of the HGP. This is achieved by leveraging the deep connection between approx-
imate GP regression and kernel ridge regression with RFs [20]. Moreover, given the well-studied
relationship between the HGP posterior variance and the time-dependent robot stiffness employed
in variable impedance control (VIC) [21, 22, 23, 24], we further assess the quality of the approx-
imation for the three VIC tasks described by Caldarelli et al. [24], and shown in Figure 1. Overall,
we demonstrate that the combination of RFs and HGPs is theoretically sound, and significantly
improves the running time of the motion primitive fitting, without sacrificing accuracy.

2 Related Work
Motion primitives One of the most popular trajectory representations appearing in literature is
given by the so-called probabilistic movement primitives (ProMPs) [25, 26, 27]. ProMPs model
the trajectory at each time-step as a parametric weighted combination of basis functions, and are
therefore different from HGPs, which are non-parametric by definition. ProMPs can be connected
with another class of trajectory models, namely dynamic movement primitves, as shown by Li et al.
[28]. On the other hand, GP-based models exhibit strong analogies with the kernelized movement
primitive model introduced by Huang et al. [29]. In general, these approaches differ from GP
regression as they also capture correlation between the different degrees of freedom (DOFs) of the
trajectory. However, GPs can also be extended to account for output correlations by leveraging
suitable coregionalization methods [30], based, e.g., on Gaussian mixture models [31].

Spectral approximations Some theoretical properties of spectral approximations for ho-
moscedastic, scalar-valued GPs have been explored in previous works. Särkkä and Piché [9] propose
a feature approximation based on different polynomial approximations of the RBF kernel function.
They are able to prove uniform convergence of the kernel, mean and variance, but without conver-
gence rates. Moreover, Solin and Särkkä [10] propose to compute the features based on the Fourier
transform of the Laplace operator. They prove convergence of the kernel function values and con-
vergence of the posterior mean and variance, but with a dependency on the size of the domain of the
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expansion of the Laplace operator. RFs are also widely used in the Bayesian optimization setting, as
they allow to provide scalable algorithms with theoretical guarantees [11, 19]. In this scenario, the
uniform convergence of the approximate kernel function is of interest as the optimization algorithms
may require sampling points in the whole domain of the function being optimized. Compared to our
work, as we will discuss in Section 4, these bounds have a worse dependency on the number n of
training samples (which is not due to the uniformity of the bounds). Although approximate GPs are
known to suffer from the so-called variance starvation phenomenon, leading to poor estimates of
the posterior variance when moving far from the training data [32], we stress that this is not prob-
lematic in LfD where one is mainly interested in the interpolation of densely sampled trajectories,
whose boundaries are delimited by the task duration.

Variational methods Multiple methods based on variational approximations of the posterior
distribution of the GP have been proposed. They typically rely on the choice of inducing points, i.e.
of a subset of the data summarizing the whole training set [6, 7, 8]. One fundamental convergence
result for the Kullback-Leibler (KL) divergence between the variational and exact GP posterior was
proven by Burt et al. [18]. Moreover, Burt et al. [33, Proposition 1] showed that the error on the KL
divergence implies convergence of the variational posterior means and variances. However, their
bound depends on the value of the exact posterior variance, which makes the comparison with our re-
sult difficult, as it will be clear from Section 4. Hence, recent approaches such as variational Fourier
features (VFFs) by Hensman et al. [8], which have shown good performance in practice, especially
in the case of billions of datapoints, do not enjoy strong theoretical guarantees as RFs. Moreover,
VFFs are limited to the Matérn class of kernels (and the work by Dutordoir et al. [34] provides an
extension to stationary kernels on the sphere), while RFs can be applied to any stationary kernel.

3 Background: Approximating HPGs with Random Features
HGP regression for trajectory encoding Let X be an input space, and x : X → R be a
scalar-valued function. In LfD, the function x depends on time, i.e., X = R≥0. A GP [2] specifies
a prior distribution over the function x, which depends on a mean function µ : X → R and a kernel
k : X × X → R. We say that x follows a GP with mean µ and kernel function k if for any vector
of time-steps t ∈ Rn, the vector x(t) of evaluations of x at t follows the multivariate normal dis-
tribution x(t) ∼ N (µ(t),K), where K ∈ Rn×n is defined as Ki,j = k(ti, tj). The mean function
is usually assumed to be 0, as the function values are standardized. The kernel function depends on
a set of hyperparameters, θ, which can be fixed or inferred from data. In LfD, the time-dependent
trajectory to be encoded consists of d DOFs. If all DOFs are fully observed, each of them is usually
modeled by an independent GP [35]. This type of estimation can be linked to a reproducing kernel
Hilbert space (RKHS) of vector-valued functions [30]. We assume to have access to y ∈ Rn, a
vector of noisy measurements of x(t). As shown by Arduengo et al. [35], assuming a constant
noise variance in LfD might severely limit the quality of the posterior prediction. Therefore,
the noise is time-dependent, turning the GP into an HGP. The posterior distribution of an HGP,
conditioned on the noise variance values at the training points and the function’s observations, is
analytically available. Let t∗ be a testing point, and kt∗ := [k(t1, t

∗), . . . , k(tn, t
∗)]T ∈ Rn. Lastly,

let Σnoise ∈ Rn×n be the noise variance at the training points, and σ2
noise,t∗ be the noise variance at

the testing point. The posterior mean and variance of the associated HGP are, respectively, [35]

µpost(t
∗) = kT

t∗(K +Σnoise)
−1y, (1)

σ2
post(t

∗) = k(t∗, t∗) + σ2
noise,t∗ − kT

t∗(K +Σnoise)
−1kt∗ . (2)

Random features Let (Ω,A, π) be a probability space over the sample space Ω, and let ψ :
Ω × X → R. Random features (RFs) are a class of randomized methods that can be used to
approximate a kernel function admitting an integral representation of the form

k(t, t′) =

∫
Ω

ψ(ω, t)ψ(ω, t′)dπ(ω) (3)

by dicretizing it. This is the case for standard kernels such as the ones belonging to the
Matérn family or the radial-basis-function (RBF) kernel, as discussed by Rahimi and Recht
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[12]. The expectation above is approximated by sampling m vectors (ωj)1≤j≤m ∼ π(ω). For
ϕ̃(t) := 1√

m
[ψ(ω1, t), . . . , ψ(ωm, t)]

T , the kernel is approximated as k̃(t, t′) := ϕ̃(t)T ϕ̃(t′). For
instance for the case of a positive definite stationary kernel k(t, t′) = k(t − t′), Bochner’s theorem
ensures that k has a non-negative Fourier transform, which can thus be used in place of π while
defining ψ to be a trigonometric function [12]. Rahimi and Recht [12] show that, for the RBF kernel
k(t, t′) = σ2

RBF exp
(
−∥t−t′∥2

/(2l2)
)
, the values of ω are s.t. ωi ∼ (2πl−2)−

m
2 exp

(
−l2|ω|2/2

)
.

Then, for b uniformly sampled from [0, 2π), they define ψ(ω, t) :=
√
2σRBF cos(ωt + b). To

retrieve closed-form expressions for the posterior mean and variance of an HGP approximated with
RFs (in the following referred to as RF-HGP), we can define the matrix K̃ ∈ Rn×n with entries
K̃i,j = k̃(ti, tj). For any testing point t∗ we define k̃t∗ = [k̃(t1, t

∗), . . . , k̃(tn, t
∗)]T ∈ Rn. Lastly,

let Σnoise and σ2
noise,t∗ be as in the previous paragraph. The posterior mean and variance of the

associated HGP are, respectively [35]
µpost(t

∗) = k̃T
t∗(K̃ +Σnoise)

−1y, (4)

σ2
post(t

∗) = k̃(t∗, t∗) + σ2
noise,t∗ − k̃T

t∗(K̃ +Σnoise)
−1k̃t∗ . (5)

We can observe that these equations are structurally the same as Equations (1) and (2), with the
approximated kernel k̃ replacing the exact kernel k. Fixing the dimensionality of the RF vector,
RF-HGPs allow for linear complexity in the number of samples when computing the posterior dis-
tribution of the HGP, as the posterior expressions in Equations (4) and (5) can be simplified by the
well-known Woodbury identity [36]. Such an identity allows to perform matrix inversion in O(m3),
m ≪ n being the dimension of the RF vector, as shown in Appendix A. Moreover, the kernel ap-
proximation is data-independent, as the functions ψ(ωj , ·) can be computed prior to seeing any data.

4 Quantification of the Approximation Errors
We now analyse the proposed approximate HGPs in two different settings. In the first one, the hy-
perparameters θ of the kernel function (which typically contains at least a lengthscale parameter), as
well as the noise variance values at the training points, Σnoise, and at a testing point, σ2

noise,t∗ , are fixed
a priori (oracle setup). In the second setting, θ, Σnoise, and σ2

noise,t∗ are directly inferred from data
(heuristic setup). In the first case, the error introduced by the RF approximation can be rigorously
quantified, as we will show in the remainder of this section. In the second case, convergence to the
exact HGP can be attained empirically, and a suitable inference algorithm needs to be used, as we
will discuss in Section 5. Both in the oracle and in the heuristic setup, the RF-HGP’s posterior dis-
tribution is computed at a set of testing time-steps T = {t∗1, . . . , t∗T }, which are fixed a priori based
on the desired task duration. In this section, we derive error bounds on posterior mean and variance
for the RF-HGP, at the test points in T , within an oracle setup. These results guarantee that RFs
are a suitable approximation strategy, that can be used in robotics scenarios. The proofs, reported
in Appendix B.2 and Appendix B.3, rely on techniques developed by Rudi and Rosasco [20].

4.1 Assumptions
In the following, we set ψj(·) := ψ(ωj , ·), where the latter function is defined in Section 3. More-
over, we make the following assumptions.
Assumption 4.1. The kernel is bounded, i.e., k(t, t′) ≤ κ. Moreover, the kernel admits the integral
representation of Equation (3), in terms of a suitable function ψ(ω, ·).
Assumption 4.2. The entries of the RF vector are bounded, i.e., |ψj(t)| ≤ α,∀j ∈ {1, . . . ,m}, ∀t.
Assumption 4.3. The noise variance values in the diagonal matrix Σnoise are bounded from below,
i.e. ∃γ ∈ (0, 1] s.t. (Σnoise)ii ≥ γn, ∀i ∈ {1, . . . , n}.
Assumption 4.1 is standard, and holds, e.g., for the RBF kernel (κ = σ2

RBF). Assumption 4.2 holds,
e.g., for the RFFs described in Section 3 (with α =

√
2σRBF). Assumption 4.3 is obtained by replac-

ing, e.g, K +Σnoise in Equations (1) and (2) with K + (Σnoise + γnI), a common practice aimed at
avoiding numerical instabilities in matrix inversion. Lastly, for the RBF kernel and RFFs, κ = α2.

4.2 Concentration of Posterior Mean and Variance
Under these assumptions, we can derive the two main results of this paper, bounding the deviation
of the posterior mean and variance of our RF-HGP w.r.t. its exact counterpart.
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Figure 2: Time taken to compute the posterior distribution with an exact HGP and an RF-HGP, for
free motion (left), assembly (center) and bed-making (right) tasks, in an oracle setup. Median, the
15th and 85th percentiles across all DOFs, 50 seeds.

Theorem 4.4. Let δ ∈ (0, 1], and m be the dimension of the RF vector. Let

m ≥ 8
(

1
3 + α2

γ

)
log( 8α

2

γδ ), and consider a vector-valued HGP with d independent components. Let
µpost and µ̃post denote its exact and RF-approximated posterior mean as of Equations (1) and (4).

Let ν = max1≤i≤d

∥∥∥ 1√
n
yi

∥∥∥, where yi denotes the observations of DOF i. Lastly, let T be a set of
testing points. Under Assumptions 4.1 to 4.3, with probability at least 1− dδ, ∀t∗ ∈ T , it holds that

∥µpost(t
∗)− µ̃post(t

∗)∥2 ≤να2

√
2d log 2|T |n

δ

mγ2
+

√
2dκν
√
γ

2 log 8κ2

γδ (1 + α2/γ)

3m
+ α

√
2 log 8κ2

γδ

γm

 .
Theorem 4.5. Under the assumptions of Theorem 4.4, denoting σ2

post and σ̃2
post respectively the exact

and RF-approximated posterior variances as of Equations (2) and (5), it holds with probability at
least 1− dδ, ∀t∗ ∈ T ,

∥σ2
post(t

∗)− σ̃2
post(t

∗)∥2 ≤α2

√
2d log 2|T |

δ

m
+

(
κα2

√
γ

+
α4

γ

)√
2d log 2|T |n

δ

m

+
α3
√
2d

√
γ

2 log 8κ2

γδ (1 + α2/γ)

3m
+ α

√
2 log 8κ2

γδ

γm

 .
Our bounds show that both the mean and the variance errors for a vector-valued RF-HGP scale as
O(m−1/2). Our results cover the RF-based approximation of the homoscedastic GP as a special
case taking Σnoise = βI for some β ≥ 0. Our results ensure that RFs are a viable data-independent
approximation method, and match the rates of other data-dependent strategies, such as the well-
studied Nyström method [37] for GPs, as shown by Lu et al. [38]. Furthermore, by inspecting the
proofs, and in particular the results in Appendix C, one can observe that the assumptions of the LfD
framework (fixed testing points, scalar domain) translate in a dependency of the bounds on |T |.
Nonetheless, our proofs can easily be adapted to the case of dense, multidimensional domains by
replacing Corollary C.2 with the uniform convergence result for RFs [39, 40] (rather than using a
point-wise bound and a union bound), which would leave the overall error in O(m−1/2).

As mentioned in Section 2, our bounds strictly improve over the state-of-the art bounds by Mutny
and Krause [11]. For instance, Mutny and Krause [11, Proof of Theorem 5 and Proposition 1] in the
context of homoscedastic GP approximated with deterministic features provide bounds of the form
supt∗ |µpost(t

∗)− µ̃post(t
∗)| ≲ ϵνn2σ−2 and supt∗ |σ2

post(t
∗)− σ̃2

post(t
∗)| ≲ ϵn3σ−2 where ϵ denotes

the accuracy of a uniform bound on the kernel approximation, i.e. supx,y |k(x, y) − k̃(x, y)| ≤ ϵ.
In our setting, when d = 1 and in the homoscedatic setting Σnoise = σ2I and γ = σ2/n (cf.
Assumption 4.3) we obtain a dependence in n of order O(n3/2 log n) both for the posterior mean
and variance which strictly improves on these bounds. This result can be derived, e.g., for the mean
by observing that the rate with respect to γ translates to an error upper bound with complexity
O(n
√
log n) +O(n3/2 log n) +O(n

√
log n).

5 Empirical Evaluation
In this section, we empirically validate the RF-HGP. The implementation is built on the package
gpflow by Matthews et al. [41]1. We choose RFFs to approximate the RBF kernel, as reported

1The open-source code for the experiments is available at https://github.com/LCSL/rff-hgp.
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Figure 3: RMSE between the posterior means (left) and posterior variances (right) of an HGP and
an RF-HGP, in an oracle setup, for three different tasks. Median, 15th and 85th percentiles across
all DOFs, 50 seeds. The purple curves are the theoretical rates including the dependency on ν, γ and
m, and show that the overall rate in 1/

√
m matches experimental result. The lowest purple curve is

for the bed making task, while the rates for assembly and proof-of-concept coincide.

Figure 4: Incremental learning with missing chunks of data, in an oracle setup, for free motion
(left), assembly (center) and bed-making (right) tasks. RF-HGP vs a Nyström approximation with
fixed centers, to achieve the same complexity as RFs. Median, 15th and 85th percentiles across all
DOFs, 50 seeds.

in Section 3. In this work, we do not train the RFF parameters ω’s, as it is prone to overfitting [13,
42], and annuls the Monte-Carlo interpretation of RFFs introduced in Section 3. To assess the
correctness of the GP approximation, we process real demonstrations of different robotic tasks,
obtained by means of kinesthetic teaching with a 7-DOF Barrett WAM manipulator. The trajectories
are recorded while performing a movement in free Cartesian space, an assembly task, and a bed-
making skill [24]. These trajectories are particularly interesting from the VIC point of view, and
summarized in Figure 1. Since the time-dependent impedance, or stiffness, of a manipulator can be
tuned based on the variance of the human demonstrations [21, 23, 22, 24], it is important that the RF
approximation does not deteriorate the quality of the posterior distribution of the HGP. The first task
exhibits varying boundaries in which the manipulator can move, while the latter two involve physical
constraints on the robot’s motion. The assembly task requires a motion with low stiffness when the
pieces being mounted are in contact. On the other hand, the bed-making skill requires the robot
to stiffen up to remove wrinkles from the sheet’s surface, in spite of it opposing the motion of the
robot’s end-effector. Each task uses a different number of human demonstrations, namely 6, 7 and
5. While the number of demonstration is relatively small, the total number of training points is 1286
for the proof-of-concept experiment, 1222 for the assembly task, and 864 for the bed-making skill,
justifying the need for scalable GPs. Moreover, the number of samples might increase for longer or
denser trajectories. We consider an oracle setup in Section 5.1, where all hyperparameters and noise
variances are assumed to be known, and then discuss and evaluate in Section 5.2 the heuristic case
of unknown hyperparameters and noise variance.

5.1 Oracle Setup
As a start, we consider the case in which the GP kernel hyperparameters θ are known, and the noise
variance values Σnoise, σ

2
noise,t∗ are provided by an oracle, as discussed in Section 4. This experiment

is useful to assess how the prediction capability of RF-HGP deteriorates due to the kernel spectral
approximation, in view of the theoretical analysis carried out in Section 4. The oracle is given by an
exact HGP trained with the EM algorithm by Kersting et al. [4], for 15 iterations per DOF.

Offline learning In this setup, we are interested in comparing the prediction times (Figure 2) and
accuracy (Figure 3) of exact and approximated GP regression. By prediction time, we refer here
to the time taken to compute the posterior means and posterior variances at the testing points. The
human demonstrations are temporally aligned on the same interval, and processed all together, in
an offline fashion. The prediction times, as shown in Figure 2, indicate that the RF-HGP is more
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Figure 5: RMSE between the posterior means of an exact and an approximated HGP, in heuristic
setup, for free motion (left), assembly (center) and bed-making (right) tasks. Median, 15th and 85th

percentiles, across all DOFs and 5 seeds.

Figure 6: RMSE between the posterior variances of an exact and an approximated HGP, in heuristic
setup, for free motion (left), assembly (center) and bed-making (right) tasks. Median, 15th and 85th

percentiles, across all DOFs and 5 seeds.

efficient, as expected. Moreover, to asses the predictive accuracy, we compute the normalized root-
mean-squared-error (RMSE) between the posterior means or variances of the HGP and RF-HGP:

RMSE%mean =

√√√√1

d

d∑
i=1

∑
t∈T (µ̃post,i(t)− µpost,i(t))2∑

t∈T µpost,i(t)2
· 100. (6)

The RMSE% on the variance is computed in the same way. This experiment allows us to observe
that the error rate follows the expected rate in O(m−1/2), as shown in Figure 3, indicating that RFs
can be used to speed up the inference without sacrificing accuracy in the posterior’s calculation.
We can also observe that although all errors decrease with an increasing number of features, the
assembly task exhibits the largest error among the three tasks. This is likely to be due to the RF
approximation being challenged by the sharp changes in the task variability.

Incremental learning RFs are data-independent, and they can be used to perform incremental
learning of the posterior distribution of the HGP [43]. In an oracle setup, the posterior distribution
can be updated every time a new demonstration is gathered (see Appendix D). This approach
is also possible, e.g., with the Nyström approximation of the kernel function, provided that the
Nyström centers are sampled from the first demonstration and not updated afterwards. Doing
so would imply re-computing the correlation matrices between the centers and the whole set of
training points, which has a linear complexity in the size of the training set. Keeping a fixed set of
Nyström centers is not an issue in general for LfD, as the domain is scalar and all demonstrations
are temporally aligned on the time interval [0, 1], and thus the first demonstration already covers
the whole domain. However, this fact does not hold if, for any reason, portions of the human
demonstrations are missing or invalid. In this case, the initialization of the centers might be poor,
and the posterior calculation spoiled. This issue is shown in the examples of Figure 4, where chunks
of 60 observations, sampled uniformly at random, were removed from each demonstration. RFFs
offer a more reliable option, in such a scenario.

5.2 Heuristic Setup
After validating our theoretical results, we now consider the more realistic setting in which the kernel
hyperparameters and noise variance are unknown and need to be heuristically estimated from data.
Note that this step can serve as preliminary stage with a few demonstrations before applying, e.g.,
the incremental learning described in the previous section. Here, we train the RF-HGP as follows.

Workflow with hyperparameters tuning Here, we consider the expectation-maximization (EM)
training proposed by Kersting et al. [4], adapted to the RF-HGP. The algorithm comprises the follow-
ing steps, which are performed independently for each DOF (all the GPs involved take time as input):

1. train a first homoscedastic GP (GP1), approximated with RFs (RF-GP), on the demonstrations’
data with a maximum likelihood estimate (MLE), to retrieve θ;
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Figure 7: Time taken to perform an MLE with an exact HGP and an RF-HGP, with demonstrations
of free motion (left), assembly (center) and bed-making (right) tasks. Median, the 15th and 85th

percentiles, across all DOFs and 5 seeds.

2. compute the mean-squared-error (MSE) between the posterior mean of GP1 and the demonstra-
tions’ data, at each time-step;

3. train a second RF-GP (GP2) by means of MLE, using the MSE as training data; GP2 is a
surrogate model of the time-dependent noise variance function;

4. compute the posterior mean and variance of a new RF-HGP (GP3) as in Equations (4) and (5),
with the kernel hyperparameters θ from step 1 and the noise variance values in Σnoise and σ2

noise,t∗

given by the posterior mean of GP2, evaluated at the training and testing time-steps respectively;
5. compute MSE between the posterior mean of GP3 and the demonstrations, at each time-step;
6. repeat from step 3 until convergence or until the maximum number of iterations is reached.

Sampling first whole noise variance profiles from the posterior of GP2, and then whole trajectories
from the posterior specified by Equations (1) and (2) conditioned on the noise variance, yields
trajectories that are strongly correlated in the regions of low variance, and vice-versa.

Results Figure 7 reports the time taken to complete an MLE for retrieving the GP hyperparame-
ters, both in the exact and in the RFF setup. Considering the errors reported in Figures 5 and 6, we
observe that convergence to the exact HGP posterior can be heuristically attained in the worst possi-
ble scenario of having no knowledge about the necessary GP priors. Again, the largest errors are at-
tained by the assembly task, as discussed for the oracle setup. Concerning variational methods, such
as the sparse variational GP (SVGP) by Hensman et al. [44], Figure 7 shows that SVGP, employed
in the EM training algorithm, requires many more iterations per step to converge, in the hyperparam-
eter training, due to the greater complexity of the optimization problem being solved. To overcome
this issue, we set the maximum number of iterations per step to 100. However, as we can observe
from Figures 5 and 6, this choice hinders the convergence through the EM training process, and our
proposed feature-based approach has a strictly better accuracy-computational complexity trade-off.

6 Limitations
The assumptions behind our theoretical analysis were stated in Section 4.1. Moreover, as discussed
in Section 4, our theoretical analysis focuses on an oracle setup. This type of scenario is standard in
kernel theory [45, 20, 38], as it allows to decouple the error due to the kernel approximation from
the uncertainty surrounding the GP hyperparameters. If this oracle setup does not hold, the HGP
training method is heuristic, and uses two approximate GPs iteratively in an EM fashion. The errors
displayed in the heuristic experiments of Section 5.2 may change with a different training algorithm.

7 Conclusion
In this work, we have studied the combination of heteroscedastic Gaussian processes and random
features, used as scalable motion primitives in the context of learning from demonstration. In a
theoretical analysis, we derived novel upper bounds on the approximation error, induced by random
features, on the posterior mean and variance of a Gaussian process. Moreover, we have validated
this approximate motion primitive w.r.t. relevant tasks for variable impedance control of robotic
manipulators, namely, a motion in free Cartesian space, an assembly task, and a bed-making skill.
Our theoretical and empirical results demonstrate that random features are a theoretically sound
approximation method, that can be used to speed up the motion primitive fitting without sacrificing
accuracy. Moreover, we have shown that random features are well suited to incremental learning
from demonstration, thanks to their data-independent nature.
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Table 1: Summary of notations.
Variable Meaning
n Number of training samples
T Number of testing samples
d Degrees of freedom (one HGP for each)
α |ψj(t)| ≤ α (cf. Assumption 4.2)
κ k(t, t′) ≤ κ (cf. Assumption 4.1)
ν ν = max1≤j≤d∥ 1√

n
yj∥

Σnoise ∈ Rn×n Diagonal time-varying noise variance at training points
R = Σnoise/n Normalized noise variance at training points
σ2

noise,t∗ ∈ R Noise variance at testing point t∗

r2t∗ = σ2
noise,t∗/n Normalized noise variance at testing point t∗

0 < γ < 1 Rii > γ, 1 ≤ i ≤ n

S : H → Rn Sampling operator with normalization n−1/2

L = SS∗ = K/n ∈ Rn×n Normalized Gram matrix with exact kernel
LR ∈ Rn×n LR = L+R

ψj(t) = ψ(ωj , t) Element of approximate feat. vector
ϕ̃(t) = m−1/2[ψ1(t), . . . , ψm(t)]T Approximate feat. vector
Sm : Rm → Rn Sampling operator with normalization n−1/2

Lm = SmS
∗
m = K̃/n ∈ Rn×n Normalized Gram matrix with RF kernel

Lm,R ∈ Rn×n Lm,R = Lm +R

A HGP Posterior Equations Revisited

In this section, we will rewrite the exact and approximated HGP posterior equations from Sec-
tion 3 in terms of standard linear operators used in RKHS theory. For a linear operator A,
we denote its adjoint by A∗. Let H be the RKHS associated to the kernel of interest. In
order to retrieve a suitable expression, we denote S : H → Rn the sampling operator de-
fined as Sf := 1√

n
[f(t1), . . . f(tn)]

T . Moreover, the adjoint of the sampling operator is de-
fined as S∗ : Rn → H : S∗a = 1√

n

∑n
i=1 aik(ti, ·), ai being the i-th entry of a. Now, let

L : Rn → Rn, L := SS∗. Note that K = nL. Let R = 1
nΣnoise, let rt∗ = 1

nσ
2
noise,t∗ . Lastly,

let ⟨·, ·⟩Rn denote the inner product of n-dimensional vectors. With this notation, let us consider
a single DOF of the trajectory to be processed. The posterior mean of the associated exact HGP
from Equation (1) is

µpost(t
∗) =

〈
(L+R)−1Sk(t∗, ·), 1√

n
y

〉
Rn

. (7)

Moreover, the posterior variance from Equation (2) is given by

σ2
post(t

∗) = k(t∗, t∗) + nrt∗ − ⟨Sk(t∗, ·), (L+R)−1Sk(t∗, ·)⟩Rn . (8)

Considering RFs, we can define the operator Sm : Rm → Rn, Sm := 1√
n
[ϕ̃(t1) . . . , ϕ̃(tn)]

T , and
Lm : Rn → Rn, Lm := SmS

∗
m. With this notation, let us consider a single DOF of the trajectory

to be processed. The RF-based posterior mean of the associated HGP from Equation (4) can be
rewritten as

µ̃post(t
∗) =

〈
(Lm +R)−1Smϕ̃(t∗),

1√
n
y

〉
Rn

. (9)

On the other hand, the RF-based posterior variance from Equation (5) is given by

σ̃2
post(t

∗) = k̃(t∗, t∗) + nrt∗ − ⟨Smϕ̃(t∗), (Lm +R)−1Smϕ̃(t∗)⟩Rn . (10)

A summary of the main operators and constants that will appear in the proofs can be found in Table 1.
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Fast matrix inversion By defintion, the operators Lm and Sm are matrices. The inversion of
the matrix Lm + R appearing in Equations (9) and (10) can be performed by means of Woodbury
identity [36], as follows:

L−1
m,R = (SmS

∗
m +R)−1 (11)

= R−1 −R−1Sm(I + S∗
mR

−1Sm)−1S∗
mR

−1. (12)

The latter expression involves inverting an m × m matrix, which boosts the speed of the HGP
posterior calculation if m≪ n.

B Proofs of the Main Results

In this appendix, we report the proofs of the two main theoretical results of our paper, along with
some technical propositions that will be extensively used. In the following, we denote by AR the
operatorA+R, withR diagonal positive definite matrix, and byAγ the operatorA+γI . Moreover,
in the remainder, ∥·∥ denotes the operator norm, while ∥·∥2 denotes the Euclidean norm of a vector.

B.1 Useful Propositions

In this part, we report three propositions that will be useful in the proofs.

Proposition B.1 (Proposition 8 of [20]). LetH be a separable Hilbert space, A,B be two bounded
self-adjoint positive linear operators onH, and λ > 0. Then

∥A−1/2
λ B1/2∥ ≤ ∥A−1/2

λ B
1/2
λ ∥ ≤

1

(1− β)1/2
, (13)

where
β = λmax

[
B

−1/2
λ (B −A)B−1/2

λ

]
. (14)

Proposition B.2. Let Sm : Rm → Rn, Sm := 1√
n
[ϕ̃(t1) . . . , ϕ̃(tn)]

T , and assume that the entries
of the RF vectors are bounded, that is, |ψj(t)| ≤ α,∀j ∈ {1, . . . ,m}. Then,

∥Sm∥ ≤ α. (15)

Proof. The result follows from the definition of operator norm:

∥Sm∥ = sup
a∈Rm,∥a∥2≤1

∥Sma∥2 (16)

= sup
a∈Rm,∥a∥2≤1

1√
n

√
⟨ϕ̃(t1),a⟩22 + · · ·+ ⟨ϕ̃(tn),a⟩22 (17)

≤ 1√
n

√
nα2 = α, (18)

as reported in the statement.

Proposition B.3. Let A be a bounded positive semi-definite operator, and let AR := A+R, with R
diagonal positive definite and Aγ = A+ γI . Lastly, assume all entries in R are greater or equal to
γ. Then,

∥A−1/2
R A1/2

γ ∥ ≤ 1. (19)

Proof. Noting that AR −Aγ = (R− γI) ≽ 0 by hypothesis, it holds Aγ ≼ AR and thus

∥A−1/2
R A1/2

γ ∥2 = ∥A−1/2
R AγA

−1/2
R ∥ ≤ ∥I∥ = 1. (20)
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B.2 Proof of Theorem 4.4 (Deviation of Approximate Posterior Mean)

We report here the proof of Theorem 4.4. We start by considering a single DOF, and generalize to
a d-valued GP at the end of this section. We begin by proving a lemma that will be used to retrieve
the main result.

Lemma B.4. Let m ≥ 8
(

1
3 + α2

γ

)
log( 8α

2

γδ ), and δ = (0, 1]. Then, the following bound holds, with
probability at least 1− δ,

∥(L−1
m,R − L

−1
R )Sk(t∗, ·)∥2 ≤

√
2κ
√
γ

2 log 8κ2

γδ (1 + α2/γ)

3m
+

√
2 log 8κ2

γδ α
2

γm

 . (21)

Proof. In order to bound the term of interest, we can use the fact that, for any invertible matrices A
and B, A−1 −B−1 = A−1(I −AB−1) = A−1(B −A)B−1, and Proposition B.3, as follows:

∥(L−1
m,R − L

−1
R )Sk(t∗, ·)∥2 (22)

=∥L−1
m,R(LR − Lm,R)L

−1
R Sk(t∗, ·)∥2 (23)

=∥L−1/2
m,R L

−1/2
m,R L1/2

m,γL
−1/2
m,γ L1/2

γ L−1/2
γ (L− Lm)L−1

R Sk(t∗, ·)∥2 (24)

≤ 1
√
γ
∥L−1/2

m,R L1/2
m,γ∥∥L−1/2

m,γ L1/2
γ ∥∥L−1/2

γ (L− Lm)L−1
R Sk(t∗, ·)∥2 (25)

≤ κ
√
γ
∥L−1/2

m,γ L1/2
γ ∥∥L−1/2

γ (L− Lm)L−1/2
γ ∥∥L−1/2

R S∥. (26)

We can now proceed to bound each of the three factors. To start off, let us consider ∥L−1/2
R S∥. This

term can be bounded by using the polar decomposition of the bounded linear operator S, as follows.
Let S = (SS∗)1/2U , where U is a partial isometry. By Proposition B.3, the definition of polar
decomposition, and by considering that L ≼ Lγ by definition,

∥L−1/2
R S∥ = ∥L−1/2

R (SS∗)1/2U∥ (27)

≤ ∥L−1/2
R L1/2∥∥U∥ (28)

≤ ∥L−1/2
R L1/2

γ ∥∥U∥ (29)
≤ 1. (30)

Now, we can move on to bound ∥L−1/2
γ (L − Lm)L

−1/2
γ ∥. To do so, we can observe that, by

definition,

Lm = SmS
∗
m (31)

=
1

n

1

m

m∑
i=1

[
ψi(t1)
. . .

ψi(tn)

]
⊗

[
ψi(t1)
. . .

ψi(tn)

]
. (32)

Moreover, due to linearity of expectation,

Eω[Lm] = L. (33)

We can therefore apply Proposition C.4, with p = m, Q = L, and Qp = Lm. Note that TrL is the
trace of the normalized Gram matrix 1

nK and hence is smaller or equal to κ2 under Assumption 4.1.
Lastly, the value of the constant F∞(γ) in Proposition C.4 can be computed as follows:〈

1√
n

[
ψi(t1)
. . .

ψi(tn)

]
,

1√
n
L−1
γ

[
ψi(t1)
. . .

ψi(tn)

]〉
Rn

≤ α2

γ
. (34)

Thus, we obtain, with probability at least 1− δ,

∥L−1/2
γ (L− Lm)L−1/2

γ ∥ ≤
2 log 8κ2

γδ (1 + α2/γ)

3m
+

√
2 log 8κ2

γδ α
2

γm
. (35)
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To conclude the proof, we can bound ∥L−1/2
m,γ L

1/2
γ ∥. By Proposition B.1, we have that

∥L−1/2
m,γ L1/2

γ ∥ ≤
1

(1− β)1/2
, where β = λmax

[
L−1/2
γ (L− Lm)L−1/2

γ

]
. (36)

According to Equation (33), we can apply Proposition C.4 and see that with probability at least 1−δ

β ≤
2 log 8κ2

γδ

3m
+

√
2 log 8κ2

γδ α
2

γm
≤ 0.5 (37)

provided that m ≥ 8
(

1
3 + α2

γ

)
log( 8α

2

γδ ).

Proof of Theorem 4.4 In order to retrieve the main concentration result, we can consider the fol-
lowing decomposition of the error on the posterior mean. By Cauchy-Schwarz inequality and Equa-
tions (7) and (9),

|µ̃post(t
∗)− µpost(t

∗)| =
∣∣∣∣〈L−1

m,RSmϕ̃(t∗)− L−1
R Sk(t∗, ·), 1√

n
y

〉
Rn

∣∣∣∣ (38)

≤ ν∥L−1
m,RSmϕ̃(t∗)− L−1

m,RSk(t
∗, ·) + L−1

m,RSk(t
∗, ·)− L−1

R Sk(t∗, ·)∥2
(39)

≤ ν∥L−1
m,R(Smϕ̃(t∗)− Sk(t∗, ·))∥2 + ν∥(L−1

m,R − L
−1
R )Sk(t∗, ·)∥2 (40)

≤ ν/γ∥Smϕ̃(t∗)− Sk(t∗, ·)∥2 + ν∥(L−1
m,R − L

−1
R )Sk(t∗, ·)∥2. (41)

Now, we can upper bound the two norms appearing in the expression above. The first addend can be
directly bounded by applying Corollary C.3. The second addend in Equation (41) can be bounded
by Lemma B.4. Hence, we obtain the following bound with probability at least 1− δ:

|µ̃post(t
∗)− µpost(t

∗)| ≤ ν/γ∥Smϕ̃(t∗)− Sk(t∗, ·)∥2 + ν∥(L−1
m,R − L

−1
R )Sk(t∗, ·)∥2 (42)

≤

√
2ν2α4 log 2Tn

δ

mγ2
+

√
2κν
√
γ

2 log 8κ2

γδ (1 + α2/γ)

3m
+

√
2 log 8κ2

γδ α
2

γm

 .
(43)

The final result for the vector-valued GP can be obtained by applying a union bound.

B.3 Proof of Theorem 4.5 (Deviation of Approximate Posterior Variance)

In this section, we prove our result related to the concentration of the approximate posterior variance.
Again, we begin by stating some lemmas that will be used in the proof.

Lemma B.5. Let δ = (0, 1]. Then, the following bound holds, with probability at least 1− δ,

|⟨Sk(t∗, ·)− Smϕ̃(t∗), L−1
R Sk(t∗, ·)⟩Rn | ≤

√
2κ2α4 log 2Tn

δ

γm
. (44)

Proof. By Cauchy-Schwarz,

|⟨Sk(t∗, ·)− Smϕ̃(t∗), L−1
R Sk(t∗, ·)⟩Rn | ≤ ∥Sk(t∗, ·)− Smϕ̃(t∗)∥2∥L−1

R Sk(t∗, ·)∥2. (45)
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By using the polar decomposition of S, for a suitable partial isometry operator U , and according
to Propositions B.1 and B.3

∥L−1
R Sk(t∗, ·)∥2 ≤ ∥L−1

R (SS∗)1/2U∥∥k(t∗, ·)∥H (46)

≤ κ∥L−1
R L1/2∥ (47)

≤ κ∥L−1/2
R ∥∥L−1/2

R L1/2∥ (48)

≤ κ
√
γ
∥L−1/2

R L1/2
γ ∥∥L−1/2

γ L1/2∥ (49)

≤ κ
√
γ
∥L−1/2

γ L1/2
γ ∥ (50)

≤ κ
√
γ
. (51)

To conclude the proof, we can observe that, according to Corollary C.3,

∥Sk(t∗, ·)− Smϕ̃(t∗)∥2 ≤

√
2α4 log 2Tn

δ

m
. (52)

Lemma B.6. Let δ = (0, 1]. Then, the following bound holds, with probability at least 1− δ,

|⟨Smϕ̃(t∗), L−1
R (Sk(t∗, ·)− Smϕ̃(t∗))⟩Rn | ≤ α2

γ

√
2α4 log 2Tn

δ

m
. (53)

Proof. By Cauchy-Schwarz inequality and Proposition B.2,

|⟨Smϕ̃(t∗), L−1
R (Sk(t∗, ·)− Smϕ̃(t∗))⟩Rn | ≤ ∥Smϕ̃(t∗)∥2∥L−1

R (Sk(t∗, ·)− Smϕ̃(t∗))∥2 (54)

≤ ∥Sm∥∥ϕ̃(t∗)∥2∥L−1
R (Sk(t∗, ·)− Smϕ̃(t∗))∥2

(55)

≤ α2

γ
∥Sk(t∗, ·)− Smϕ̃(t∗)∥2. (56)

Now, we can again observe that, according to Corollary C.3,

∥Sk(t∗, ·)− Smϕ̃(t∗)∥2 ≤

√
2α4 log 2Tn

δ

m
, (57)

which concludes the proof.

Lemma B.7. Let m ≥ 8
(

1
3 + α2

γ

)
log( 8α

2

γδ ), and δ = (0, 1]. Then, the following bound holds, with
probability at least 1− δ,

|⟨Smϕ̃(t∗), (L−1
R − L

−1
m,R)Smϕ̃(t∗)⟩Rn | ≤ α3

√
2

√
γ

2 log 8κ2

γδ (1 + α2/γ)

3m
+

√
2 log 8κ2

γδ α
2

γm

 .
(58)
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Proof. Firstly, we can observe that, by Cauchy-Schwarz inequality, Propositions B.2 and B.3, the
polar decomposition of Sm, and the fact that Lm ≼ Lm,γ by definition, we have that

|⟨Smϕ̃(t∗),(L−1
R − L

−1
m,R)Smϕ̃(t∗)⟩Rn |

= |⟨Smϕ̃(t∗), L−1
m,R(L− Lm)L−1

R Smϕ̃(t∗)⟩Rn | (59)

= |⟨L−1/2
m,R Smϕ̃(t∗), L

−1/2
m,R (L− Lm)L−1

R Smϕ̃(t∗)⟩Rn | (60)

≤ ∥L−1/2
m,R Smϕ̃(t∗)∥2∥L−1/2

m,R (L− Lm)L−1
R Smϕ̃(t∗)∥2 (61)

≤ α3∥L−1/2
m,R (SmS

∗
m)1/2U∥∥L−1/2

m,R L1/2
m,γL

−1/2
m,γ (L− Lm)L−1

R Smϕ̃(t∗)∥2 (62)

≤ α3∥L−1/2
m,R L1/2

m,γ∥∥L−1/2
m,γ L1/2

γ ∥∥L−1/2
γ (L− Lm)L−1/2

γ ∥|L1/2
γ L

−1/2
R ∥∥L−1/2

R ∥
(63)

≤ α3

√
γ
∥L−1/2

m,γ L1/2
γ ∥∥L−1/2

γ (L− Lm)L−1/2
γ ∥. (64)

Now, we can bound the two factors. According to Propositions B.1 and C.4, with probability at least
1− δ, for δ ∈ (0, 1] and m ≥ 8

(
1
3 + α2

γ

)
log( 8α

2

γδ ), we have that

∥L−1/2
m,γ L1/2

γ ∥∥L−1/2
γ (Lγ−Lm,γ)L

−1/2
γ ∥ ≤

√
2

2 log 8κ2

γδ (1 + α2/γ)

3m
+

√
2 log 8κ2

γδ α
2

γm

 , (65)

concluding the proof.

Proof of Theorem 4.5 We are now ready to prove Theorem 4.5. According to Equations (8)
and (10), and similarly to what we did for the posterior mean, we can decompose the error on the
variance of a single DOF as follows:

|σ2
post(t

∗)− σ2
post(t

∗)| =|k(t∗, t∗)− ⟨Sk(t∗, ·), L−1
R Sk(t∗, ·)⟩Rn

− k̃(t∗, t∗) + ⟨Smϕ̃(t∗), L−1
m,RSmϕ̃(t∗)⟩Rn | (66)

≤|k(t∗, t∗)− k̃(t∗, t∗)|
+ |⟨Sk(t∗, ·), L−1

R Sk(t∗, ·)⟩Rn − ⟨Smϕ̃(t∗), L−1
m,RSmϕ̃(t∗)⟩Rn | (67)

≤|k(t∗, t∗)− k̃(t∗, t∗)|
+ |⟨Sk(t∗, ·)− Smϕ̃(t∗), L−1

R Sk(t∗, ·)⟩Rn |
+ |⟨Smϕ̃(t∗), L−1

R Sk(t∗, ·)− L−1
m,RSmϕ̃(t∗)⟩Rn | (68)

≤|k(t∗, t∗)− k̃(t∗, t∗)|
+ |⟨Sk(t∗, ·)− Smϕ̃(t∗), L−1

R Sk(t∗, ·)⟩Rn |
+ |⟨Smϕ̃(t∗), L−1

R (Sk(t∗, ·)− Smϕ̃(t∗))⟩Rn |
+ |⟨Smϕ̃(t∗), (L−1

R − L
−1
m,R)Smϕ̃(t∗)⟩Rn |. (69)

Now, we can upper bound the four addends appearing in the decomposition above. The first addend
can by directly bounded by Corollary C.2. The second addend of the decomposition in Equation (69)
can be bounded by Lemma B.5. The third addend in Equation (69) can be bounded by Lemma B.6.
The last addend in Equation (69) can be bounded by Lemma B.7. In this way, we retrieve the result
of Theorem 4.5, obtaining the following bound holding with probability at least 1−δ. Having defined
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C :=

√
2α4 log 2T

δ

m +
√

2κ2α4 log 2Tn
δ

γm + α2

γ

√
2α4 log 2Tn

δ

m + α3
√
2√

γ

[
2 log 8κ2

γδ (1+α2/γ)

3m +

√
2 log 8κ2

γδ α2

γm

]
:

|σ2
post(t

∗)− σ2
post(t

∗)| ≤ |⟨k(t∗, ·), k(t∗, ·)⟩H − ⟨ϕ̃(t∗), ϕ̃(t∗)⟩Rm |

+ ⟨Sk(t∗, ·)− Smϕ̃(t∗), L−1
R Sk(t∗, ·)⟩Rn |

+ |⟨Smϕ̃(t∗), L−1
R (Sk(t∗, ·)− Smϕ̃(t∗))⟩Rn |

+ |⟨Smϕ̃(t∗), (L−1
R − L

−1
m,R)Smϕ̃(t∗)⟩Rn | (70)

≤ C. (71)

The final result for the vector-valued GP can be obtained by applying a union bound.

C Concentration Results

We first provide a few lemmas for the concentration of the approximate kernel functions that derive
from Hoeffding inequality, and then a lemma for the concentration of random operators that derives
from Bernstein inequality. Again, we denote by Aγ the operator A + γI . ∥·∥ denotes the operator
norm, while ∥·∥2 denotes the Euclidean norm of a vector.

C.1 Approximation of the Kernel Function

Note that if a uniform convergence of the RF-HGP posterior is seeked w.r.t. the domain of the func-
tion modelled with the HGP, our proofs could be adapted by replacing the following Corollary C.2
with a uniform convergence result. For instance, in the case of RFFs, such a result can be found
in [39, Theorem 1 and Remark 1].

Lemma C.1. Let δ = (0, 1]. Then, for any (t1, t2), with probability at least 1− δ, it holds

∣∣∣ϕ̃(t1)T ϕ̃(t2)− k(t1, t2)∣∣∣ ≤
√

2α4 log 2
δ

m
. (72)

Proof. To upper bound the quantity of interest, we can use Hoeffding’s inequality for bounded
random variables. Let Aj(t1, t2) := ψj(t1)ψj(t2) − Eωψ(ω, t1)ψ(ω, t2). Since −α2 ≤
ψj(t1)ψj(t2) ≤ α2 according to Assumption 4.2, by Hoeffding inequality, we have that

Pr

 1

m

∣∣∣∣∣∣
m∑
j=1

Aj(t1, t2)

∣∣∣∣∣∣ ≥ t

m

 ≤ 2e−
2t2

4mα4 . (73)

Therefore, by setting the above upper bound smaller than δ, for δ ∈ (0, 1], we get that with proba-
bility at least 1− δ

∣∣∣ϕ̃(t1)T ϕ̃(t2)− k(t1, t2)∣∣∣ = 1

m

∣∣∣∣∣∣
m∑
j=1

Aj(t1, t2)

∣∣∣∣∣∣ ≤
√

2α4 log 2
δ

m
. (74)

Corollary C.2. Let δ = (0, 1]. Then with probability at least 1− δ, it holds

∣∣∣ϕ̃(t∗)T ϕ̃(t∗)− k(t∗, t∗)∣∣∣ ≤
√

2α4 log 2|T |
δ

m
, ∀t∗ ∈ T . (75)

Proof. We apply Lemma C.1 on each element of T with δ′ := δ/T . The claimed result then follows
using a union bound.

18



Corollary C.3. Let δ = (0, 1]. Then with probability at least 1− δ,

∥Smϕ̃(t∗)− Sk(t∗, ·)∥2 ≤

√
2α4 log 2|T |n

δ

m
, ∀t∗ ∈ T . (76)

Proof. It holds

∥Smϕ̃(t∗)− Sk(t∗, ·)∥22 =
1

n

n∑
i=1

[
ϕ̃(ti)

T ϕ̃(t∗)− k(ti, t∗)
]2

(77)

The result thus follows from applying nT times Lemma C.1 on the pairs ((ti, t∗))1≤i≤n,t∗∈T with
probability δ′ := δ/(nd) and using a union bound.

C.2 Concentration of the Kernel matrix

The following result derives from the Bernstein inequality for sums of random operators on separa-
ble Hilbert spaces in operator norm.

Proposition C.4 (Proposition 6 and Remark 10 of [20]). Let v1, ...,vp with p ≥ 1, be independent
and identically distributed random vectors on a separable Hilbert spacesH such that Q = Ev ⊗ v
is trace-class, and for any λ > 0 there exists a constant F∞(λ) <∞ such that ⟨v, (Q+λI)−1v⟩ ≤
F∞(λ) almost everywhere. Let Qp = 1

p

∑p
i=1 vi ⊗ vi and take 0 < λ ≤ ∥Q∥. Then for any δ ≥ 0,

the following holds with probability at least 1− δ:

∥Q−1/2
λ (Q−Qp)Q

−1/2
λ ∥ ≤ 2w(1 + F∞(λ))

3p
+

√
2wF∞(λ)

p
(78)

where w = log 8TrQ
λδ . Moreover, with the same probability,

λmax

[
Q

−1/2
λ (Q−Qp)Q

−1/2
λ

]
≤ 2w

3p
+

√
2wF∞(λ)

p
. (79)

Moreover, for any s ∈ (0, 1], if ∥vi∥ ≤ α, we have that, with probability at least 1− δ,

λmax

[
Q

−1/2
λ (Q−Qp)Q

−1/2
λ

]
≤ s. (80)

provided that p ≥ 2
t2

[
2t
3 + F∞(γ)

]
log 8α2

λδ and λ ≤ ∥Q∥.

D Efficient Matrix Inversion and Online Updates

In this section, we show how the expression of the posterior mean and variance can easily be updated
when adding new samples to the dataset.

We recall that the operators Sm and Lm,R are matrices and are defined in Appendix A. As discussed
in Appendix A, the inversion of Lm,R, involved the posteriors of Equations (9) and (10), can be
simplified by applying Woodbury identity [36], as follows:

L−1
m,R = (SmS

∗
m +R)−1 (81)

= R−1 −R−1Sm(I + S∗
mR

−1Sm)−1S∗
mR

−1. (82)

The posterior mean of the HGP in Equation (9) becomes:

µ̃post(t
∗) = ⟨

[
R−1 −R−1Sm(I + S∗

mR
−1Sm)−1S∗

mR
−1

]
Smϕ̃(t∗),

1√
n
y⟩Rn (83)

= ϕ̃(t∗)T
[
I − S∗

mR
−1Sm(I + S∗

mR
−1Sm)−1

]
S∗
mR

−1 1√
n
y (84)

= ϕ̃(t∗)T
[
I −B(I +B)−1

]
A (85)
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where A := 1√
n
S∗
mR

−1y ∈ Rm and B := S∗
mR

−1Sm ∈ Rm×m. Moreover, the only term in the
expression of the posterior variance of Equation (10)

σ̃2
post(t

∗) =⟨ϕ̃(t∗), ϕ̃(t∗)⟩Rm + nrt∗ − ⟨Smϕ̃(t∗), (Lm +R)−1Smϕ̃(t∗)⟩Rn (86)

which varies with n is

⟨Smϕ̃(t∗), (Lm +R)−1Smϕ̃(t∗)⟩Rn (87)

= ϕ̃T (t∗)
[
S∗
mR

−1Sm − S∗
mR

−1Sm(I + S∗
mR

−1Sm)−1S∗
mR

−1Sm

]
ϕ̃(t∗), (88)

= ϕ̃T (t∗)
[
B −B(I +B)−1B

]
ϕ̃(t∗). (89)

When a new human demonstration is gathered, the training set is enlarged by adding nnew training
points. This means that the matrix Sm is updated by adding nnew rows (and renormalized), contain-
ing the RF embeddings of the new training points. The same happens to vector y and to the diagonal
matrix R, which is enlarged by adding nnew rows and columns. This means that matrices A and B
support online updates. In particular, after initializing A and B to the null matrix, having collected
the new embeddings in Sm,new ∈ Rnnew×m (with normalization n−1/2

new ) and the new noise variance
values in Rnew ∈ Rnnew×nnew (with normalization n−1

new), the updates are as follows:

A← A+ 1√
nnew

S∗
m,newR

−1
newynew (90)

B ← B + S∗
m,newR

−1
newSm,new. (91)

Having computed the updates, the matrices appearing in the posterior mean and variance can be
computed in constant time w.r.t. the current size of the training set during the data streaming.
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