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Sketched Clustering via Hybrid
Approximate Message Passing

Evan Byrne, Antoine Chatalic, Rémi Gribonval , Fellow, IEEE, and Philip Schniter , Fellow, IEEE

Abstract—In sketched clustering, a dataset of T samples is first
sketched down to a vector of modest size, from which the cen-
troids are subsequently extracted. Its advantages include 1) re-
duced storage complexity and 2) centroid extraction complexity in-
dependent of T . For the sketching methodology recently proposed
by Keriven et al., which can be interpreted as a random sampling of
the empirical characteristic function, we propose a sketched clus-
tering algorithm based on approximate message passing. Numer-
ical experiments suggest that our approach is more efficient than
the state-of-the-art sketched clustering algorithm “CL-OMPR” (in
both computational and sample complexity) and more efficient than
k-means++ when T is large.

Index Terms—Clustering algorithms, data compression, com-
pressed sensing, super-resolution, approximate message passing.

I. INTRODUCTION

G IVEN a dataset X � [x1, . . . ,xT ] ∈ RN×T comprising
T samples of dimension N , the standard clustering prob-

lem is to findK centroidsC � [c1, . . . , cK ] ∈ RN×K that min-
imize the sum of squared errors (SSE)

SSE(X,C) � 1

T

T∑

t=1

min
k
‖xt − ck‖22. (1)

Finding the optimal C is an NP-hard problem [1]. Thus, many
heuristic approaches have been proposed, such as the k-means
algorithm [2], [3]. Because k-means can get trapped in bad local
minima, robust variants have been proposed, such as k-means++
[4], which uses a careful random initialization procedure to yield
solutions with SSE that have on average ≤ 8(lnK + 2) times
the minimal SSE. The computational complexity of k-means++
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scales as O(TKNI), with I the number of iterations, which is
impractical when T is large.

A. Sketched Clustering

In sketched clustering [5]–[7], the dataset X is first sketched
down to a vector y withM = O(KN) components, from which
the centroids C are subsequently extracted. In the typical case
that K � T , the sketch consumes much less memory than
the original dataset. If the sketch can be performed efficiently,
then—since the complexity of centroid-extraction is invariant
to T—sketched clustering may be more efficient than direct
clustering methods when T is large. Note, for example, that
k-means++ processes the T data samples in X at every itera-
tion, whereas sketched clustering processes the T data samples
in X only once, during the sketching step.

In this work, we focus on sketches of the type proposed by
Keriven et al. in [5], [6], which use y = [y1, . . . , yM ]T with

ym =
1

T

T∑

t=1

exp
(
jwT

mxt

)
(2)

and randomly1 generated W � [w1, . . . ,wM ]T ∈ RM×N .
Note that ym in (2) can be interpreted as a sample of the empirical
characteristic function [8], i.e.,

φ(wm) =

∫

RN

p(x) exp
(
jwT

mx
)
dx (3)

under the empirical distribution p(x) = 1
T

∑T
t=1 δ(x− xt),

with Dirac δ(·). Here, each wm can be interpreted as a mul-
tidimensional frequency sample. The process of sketching X
down to y via (2) costs O(TMN) operations, but it can be
performed efficiently in an online and/or distributed manner.

To recover the centroids C from y, the state-of-the-art algo-
rithm is compressed learning via orthogonal matching pursuit
with replacement (CL-OMPR) [5], [6]. It aims to solve

argmin
C

min
α:1Tα=1

M∑

m=1

∣∣∣∣∣ym −
K∑

k=1

αk exp
(
jwT

mck
)
∣∣∣∣∣

2

(4)

using a greedy heuristic inspired by the orthogonal matching
pursuit (OMP) algorithm [9] popular in compressed sensing.
With sketch length M ≥ 10KN , CL-OMPR typically recov-
ers centroids of similar or better quality to those attained with

1In [5] it was proposed to generate {wm} as independent draws from a
distribution for which wm/‖wm‖ is uniformly distributed on the unit sphere
but ‖wm‖ has a prescribed density. More details are given in Section II-A.
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k-means++. One may wonder, however, whether it is possible
to recover accurate centroids with sketch lengths closer to the
counting bound M = 1

2KN . Also, since CL-OMPR’s compu-
tational complexity is O(MNK2), one may wonder whether
it is possible to recover accurate centroids with computational
complexity O(MNK).

B. Contributions

To recover the centroids C from a sketch y of the form in
(2), we propose the compressive learning via approximate mes-
sage passing (CL-AMP) algorithm, with computational com-
plexity O(MNK). Numerical experiments show that, in most
cases, CL-AMP accurately recovers centroids from sketches of
length M ≥ 2KN . This is an improvement over CL-OMPR,
which typically requires M ≥ 10KN . Our experiments estab-
lish these behaviors over many combinations of K ∈ [5, 50],
N ∈ [10, 300], and sample numbers T ∈ [105, 108]. Experi-
ments also show that CL-AMP recovers centroids faster and
more accurately than k-means++ when T is large, e.g., T ≥ 107

in our numerical experiments.
We proposed a simple incarnation of the CL-AMP algorithm

in the conference paper [10], with derivation details omitted due
to space limitations. In this paper, we present the full derivation
of CL-AMP with an improved initialization and hyperparameter
tuning scheme, and a much more comprehensive set of numerical
experiments.

The remainder of the paper is organized as follows. In
Section II, we derive CL-AMP after reviewing relevant back-
ground on approximate message passing (AMP) algorithms. In
Section III, we present numerical experiments using synthetic
and MNIST data, and we apply CL-AMP to multidimensional
frequency estimation. In Section IV, we conclude.

II. COMPRESSIVE LEARNING VIA AMP

A. High-Dimensional Inference Framework

CL-AMP treats centroid recovery as a high-dimensional infer-
ence problem rather than an optimization problem like minimiz-
ing (1) or (4). In particular, it models the data using a Gaussian
mixture model (GMM)

xt ∼
K∑

k=1

αkN (ck,Φk), (5)

where the centroids ck act as the GMM means, and the GMM
weights αk and covariance matrices Φk are treated as un-
known parameters. That is, {xt}Tt=1 are assumed to be drawn
i.i.d. from the GMM distribution (5). To recover the centroids
C � [c1, . . . , cK ] from y, CL-AMP computes an approxima-
tion to the MMSE estimate

Ĉ = E{C |y}, (6)

where the expectation is taken over the posterior density

p(C|y) ∝ p(y|C)p(C). (7)

In (7), p(y|C) is the likelihood function of C, and p(C) is the
prior density on C. The dependence of p(y|C) on {αk} and
{Φk} will be detailed in the sequel.

As we now establish, the form of the sketch in (2) implies
that, conditioned on the centroids C and the frequencies W , the
elements of y can be treated as i.i.d. In other words, the sketch
y follows a generalized linear model (GLM) [11]. To establish
this result, let us first define the normalized frequency vectors

am � wm/gm with gm � ‖wm‖ (8)

and the (normalized) transform outputs

zT
m � aT

mC ∈ RK . (9)

Then p(y|C) takes the form of a GLM, i.e.,

p(y|C) =

M∏

m=1

py|z
(
ym
∣∣aT

mC
)
, (10)

for a conditional pdf py|z that will be detailed in the sequel.
From (2) and the definitions of am and gm in (8), we have

ym =
1

T

T∑

t=1

exp
(
jwT

mxt

)
(11)

≈ E
{
exp

(
jwT

mxt

) ∣∣ wm

}
(12)

=

K∑

k=1

αk exp

(
jgm aT

mck︸ ︷︷ ︸
� zmk

−g2m
2

aT
mΦkam︸ ︷︷ ︸
� τmk

)
, (13)

where (12) holds under large T and (13) follows from the fact

wT
mxt

∣∣wm ∼
K∑

k=1

αkN (gmzmk, g
2
mτmk) (14)

under (5), and the following well-known result [12, p.153]:

E{ejx} = exp
(
jμ− σ2/2

)
when x ∼ N (μ, σ2). (15)

For am distributed uniformly on the sphere, the elements
{τmk}Mm=1 in (13) concentrate as N →∞ [13], in that

τmk
p−→ E{τmk} = tr(Φk)/N � τk, (16)

as long as the peak-to-average eigenvalue ratio of Φk remains
bounded. Thus, for large T and N , (13) and (16) imply that

ym =

K∑

k=1

αk exp

(
jgmzmk − g2mτk

2

)
, (17)

which implies that the inference problem depends on the co-
variance matrices {Φk} only through the hyperparameters {τk}.
Equation (17) can then be rephrased as

py|z(ym|zm;α, τ )

= δ

(
ym −

K∑

k=1

αk exp

(
jgmzmk − g2mτk

2

))
, (18)

where τ � [τ1, . . . , τK ]T and α � [α1, . . . , αK ]T are hyperpa-
rameters of the GLM that will be estimated from y.
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For the CL-AMP framework, any prior of the form

p(C) =

N∏

n=1

pc
(
cT
n

)
(19)

is admissible, where (with some abuse of notation) cT
n denotes

the nth row of C. For all experiments in Section III, we used
the trivial prior p(C) ∝ 1.

In summary, CL-AMP aims to compute the MMSE es-
timate of C ∈ RN×K from the sketch y ∈ C

M under the
prior C ∼∏N

n=1 pc(cn) from (19) and the likelihood y ∼∏M
m=1 py|z(ym|zm;α, τ ) from (18), where zT

m is the mth row
of Z = AC ∈ RM×K and A ∈ RM×N is a large random ma-
trix with rows {aT

m} distributed uniformly on the unit sphere.
CL-AMP estimates the values of α and τ from the sketch prior
to estimating C, as detailed in the sequel.

As proposed in [5], the row-norms {gm} from (8) were drawn
i.i.d. from the distribution

p(g;σ2) ∝ 1[0,∞)(g)

√
g2σ2 +

g4σ4

4
exp

(
−1

2
g2σ2

)
(20)

with shape parameter σ2. The authors in [5] suggest using σ2 =
1

NK

∑K
k=1 tr(Φk) and propose a method to estimate σ2 from

y. However, our numerical experiments suggest that the simpler
assignment

σ2 =
E{‖x‖22}

N
≈ ‖X‖

2
F

NT
(21)

provides significantly improved performance. Note that the right
side of (21) can be computed in an online manner, or approxi-
mated using a subset of the data.

B. Approximate Message Passing

Exactly computing the MMSE estimate of C from y is im-
practical due to the form of py|z. Instead, one might consider
approximate inference via the sum-product algorithm (SPA),
but even the SPA is intractable due to the form of py|z. Given the
presence of a large random matrix A in the problem formula-
tion, we instead leverage approximate message passing (AMP)
methods. In particular, we propose to apply the simplified hybrid
generalized AMP (SHyGAMP) methodology from [14], while
simultaneously estimating α and τ through expectation maxi-
mization (EM). A brief background on AMP methods will now
be provided to justify our approach.

The original AMP algorithm of Donoho, Maleki, and Mon-
tanari [15] was designed to estimate i.i.d. c under the stan-
dard linear model (i.e., y = Ac+ n with known A ∈ RM×N

and additive white Gaussian noise n). The generalized AMP
(GAMP) algorithm of Rangan [16] extended AMP to the gen-
eralized linear model (i.e., y ∼ p(y|z) for z = Ac and separa-
ble p(y|z) =∏M

m=1 p(ym|zm)). Both AMP and GAMP give
accurate approximations of the SPA under large i.i.d. sub-
Gaussian A, while maintaining a computational complexity of
onlyO(MN). Furthermore, both can be rigorously analyzed via
the state-evolution framework, which proves that they compute
MMSE optimal estimates of c in certain regimes [17].

Algorithm 1: SHyGAMP.

Require: Measurements y ∈ C
M , matrix A ∈ RM×N with

‖A‖2F = M , pdfs pc|r(·|·) and pz|y,p(·|·, ·;α, τ ) from

(22) and (24), initial Ĉ0 ∈ RN×K and qp = qp
0 ∈ RK

+ .

1: Ŝ ← 0, Ĉ ← Ĉ0.
2: repeat
3: P̂ ← AĈ − ŜDiag(qp)
4: qz

m ← diag(Cov{zm | ym, p̂m; Diag(qp),α, τ}),
m = 1...M

5: ẑm ← E{zm | ym, p̂m; Diag(qp),α, τ},
m = 1...M

6: qs ← 1
 qp − ( 1
M

∑M
m=1 q

z
m)
 (qp � qp)

7: Ŝ ← (Ẑ − P̂ )Diag(qp)−1

8: qr ← N
M 1
 qs

9: R̂← Ĉ +ATŜDiag(qr)
10: qc

n ← diag(Cov{cn | r̂n; Diag(qr)}), n = 1...N
11: ĉn ← E{cn | r̂n; Diag(qr)}, n = 1...N

12: qp ← 1
N

∑N
n=1 q

c
n

13: until convergence
14: return Ĉ

A limitation of AMP [15] and GAMP [16] is that they treat
only problems with i.i.d. estimand c and separable likelihood
p(y|z) =∏M

m=1 p(ym|zm). Thus, Hybrid GAMP (HyGAMP)
[18] was developed to tackle problems with a structured prior
and/or likelihood. HyGAMP could be applied to the compres-
sive learning problem described in Section II-A, but it would re-
quire computing and inverting O(N +M) covariance matrices
of dimension K at each iteration. For this reason, we instead ap-
ply the simplified HyGAMP (SHyGAMP) algorithm from [14],
which uses diagonal covariance matrices in HyGAMP to reduce
its computational complexity. As described in [14], SHyGAMP
can be readily combined with the EM algorithm to learn the
hyperparameters α and τ .

C. SHyGAMP

The SHyGAMP algorithm was proposed and described in de-
tail in [14]; we provide only a brief review here. Algorithm 1
summarizes the SHyGAMP algorithm using the language of
Section II-A. In lines 10-11, with some abuse of notation, we
use cT

n to denote the nth row of the centroid matrix C (where
in (5) we used ck to denote the kth column of C). We also use
P̂ � [p̂1, . . . , p̂M ]T, Ẑ � [ẑ1, . . . , ẑM ]T, R̂ � [r̂1, . . . , r̂N ]T,

 for componentwise division, and � for componentwise mul-
tiplication. In the sequel, covariance matrices will be denoted
by (superscripted) Q and vectors of their diagonal elements de-
noted by (superscripted) q. A brief interpretation of SHyGAMP
is now provided.

At each iteration, lines 4-5 of Algorithm 1 generate the pos-
terior mean and covariance of the transform outputs zm from
(9) under a likelihood py|z like (18) and the “pseudo” prior
zm ∼ N (p̂m,Qp), where p̂m and Qp = Diag(qp) are updated
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at each SHyGAMP iteration. Thus, the pdf used for the covari-
ance and expectation in lines 4-5 is

pz|y,p(zm|ym, p̂m;Qp,α, τ )

=
py|z(ym|zm;α, τ )N (zm; p̂m,Qp)∫

py|z(ym|z′m;α, τ )N (z′m; p̂m,Qp) dz′m
. (22)

Similarly, lines 10-11 compute the posterior mean and covari-
ance of cn under a prior pc of the form (19) and “pseudo” mea-
surements r̂n that follow the statistical model

r̂n = cn + vn, vn ∼ N (0,Qr), (23)

where r̂n and Qr = Diag(qr) are updated at each SHyGAMP
iteration. Thus, the pdf used for the covariance and expectation
in lines 10-11 is

pc|r(cn|r̂n;Qr) =
pc(cn)N (cn; r̂n,Q

r)∫
pc(c′n)N (c′n; r̂n,Q

r) dc′n
. (24)

As the SHyGAMP iterations progress, the output [ĉ1, . . . ,
ĉN ]T of line 11 converges to an approximation of the MMSE
estimate E{C|y}, and the output [ẑ1, . . . , ẑM ]T of line 5 con-
verges to an approximation of the MMSE estimate E{Z|y}.
Essentially, the SHyGAMP algorithm breaks an inference prob-
lem of dimension NK into O(M +N) inference problems of
dimension K (i.e., lines 4-5 and 10-11 of Algorithm 1), each
involving an independent-Gaussian pseudo-prior or pseudo-
likelihood, evaluated iteratively. The computational complexity
of SHyGAMP is O(MNK).

D. From SHyGAMP to CL-AMP

The SHyGAMP algorithm can be applied to many differ-
ent problems via appropriate choice of py|z and pc. To apply
SHyGAMP to sketched clustering, we choose py|z and pc as de-
scribed in Section II-A. As we will see, the main challenge is
evaluating lines 4-5 of Algorithm 1 for the py|z in (18).

1) Inference of zm: For lines 4-5 of Algorithm 1, we would
like to compute the mean and variance

ẑmk =

∫
RK zmkpy|z(ym|zm)N (zm; p̂m,Qp) dzm

Cm
(25)

qz
mk=

∫
RK (zmk − ẑmk)

2py|z(ym|zm)N (zm; p̂m,Qp) dzm

Cm
,

(26)

where qz
mk is the kth element of qz

m and

Cm =

∫

RK

py|z(ym|zm)N (zm; p̂m,Qp) dzm. (27)

However, due to the form of py|z in (18), we are not able to find
closed-form expressions for ẑmk or qz

mk. Thus, we propose to
approximate ẑmk and qz

mk by writing (17) as

ym = αk exp(−g2mτk/2) exp
(
jgmzmk

)

+
∑

l �=k

αl exp(−g2mτl/2) exp (jgm(zml)) (28)

and treating the sum over l as complex Gaussian. For the remain-
der of this section, we suppress the subscripts “m” and “y|z” to
simplify the notation.

We now give a brief sketch of the derivation. First, we write
(28) as

y = αk exp(−g2τk/2)︸ ︷︷ ︸
� βk

exp
(
j g(zk + nk)︸ ︷︷ ︸

� θk

)

+
∑

l �=k

αl exp(−g2τl/2)︸ ︷︷ ︸
= βl

exp
(
jg(zl + nl)

)
︸ ︷︷ ︸

� vl

. (29)

Here we introduce i.i.d. nk ∼ N (0, qn), which will allow us to
leverage the Gaussian multiplication rule (see footnote 2) to by-
pass tedious linear algebra. Eventually we will take qn → 0, so
that (29) matches (28). Next we derive expressions (42) and (48),
which state ẑk and qz

k in terms of the posterior mean and vari-
ance on the 2π-periodic quantity θk in (29). By approximating
the second term in (29) as Gaussian, the posterior of θk takes the
form of a generalized von Mises distribution, as summarized in
(68). Because the posterior mean and variance of θk are not com-
putable in closed-form, we approximate them using numerical
integration. Finally, we relate the posterior mean and variance
of θk back to ẑk and qz

k.
We now begin the derivation. First, we derive an expression

for the marginal posterior p(zk|y) under the pseudo-prior zk ∼
N (p̂k, q

p
k) ∀k. To start,

p(zk|y) =
∫

RK

p(z, θk|y) dθk dz\k (30)

=
1

p(y)

∫

RK

p(y|z, θk)p(θk|z)p(z) dθk dz\k (31)

=
1

p(y)

∫

RK

p(y|z\k, θk)N (θk; gzk, g
2qn)

×
K∏

l=1

N (zl; p̂l, q
p
l ) dθk dz\k, (32)

where z\k � [z1, . . . , zk−1, zk+1, . . . , zK ]T. A change-of-
variables from zl to z̃l � zl − p̂l for all l �= k gives

p(zk|y) = N (zk; p̂k, q
p
k)

p(y)

∫

R
N (θk; gzk, g

2qn)

×
⎡

⎣
∫

RK−1
p(y|z̃\k, θk)

∏

l �=k

N (z̃l; 0, q
p
l ) dz̃\k

⎤

⎦dθk,

(33)

where p(y|z̃\k, θk) is associated with the generative model

y = βk exp(jθk) +
∑

l �=k

βl exp (jg(p̂l + z̃l + nl)) (34)

with i.i.d. nl ∼ N (0, qn). Now, because z̃l and nl are (apri-
ori) mutually independent zero-mean Gaussian variables, we
can work directly with the sum ñl � z̃l + nl ∼ N (0, qp

l + qn)
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and thus bypass the inner integral in (33). This allows us to write

p(zk|y) = N (zk; p̂k, q
p
k)

p(y)

∫

R
N (θk; gzk, g

2qn)p(y|θk) dθk,
(35)

where p(y|θk) is associated with the generative model

y = βk exp(jθk) +
∑

l �=k

βl exp(jg(p̂l + ñl))︸ ︷︷ ︸
= vl

(36)

with i.i.d. ñl ∼ N (0, qp
l + qn). Recalling that y ∈ C, it will

sometimes be useful to write (36) as
[
Re{y}
Im{y}

]
∼ N

⎛

⎝βk

[
cos(θk)

sin(θk)

]
+
∑

l �=k

βl E

{[
Re{vl}
Im{vl}

]}
,

∑

l �=k

β2
l Cov

{[
Re{vl}
Im{vl}

]}⎞

⎠ . (37)

To compute the posterior mean of zk, (35) implies

ẑk � E{zk|y} =
∫

R
zk p(zk|y) dzk (38)

=
1

p(y)

∫

R

[∫

R
zkN (gzk; θk, g

2qn)N (zk; p̂k, q
p
k) dzk

]

× p(y|θk) dθk (39)

=

∫

R

⎡

⎣
∫

R
zkN

⎛

⎝zk;

θk/g
qn + p̂k

qp
k

1
qn + 1

qp
k

,
1

1
qn + 1

qp
k

⎞

⎠ dzk

⎤

⎦

× N
(
θk; gp̂k, g

2(qn + qp
k)
)
p(y|θk)

p(y)︸ ︷︷ ︸
= p(θk|y)

dθk (40)

=

∫

R

θk/g
qn + p̂k

qp
k

1
qn + 1

qp
k

p(θk|y) dθk (41)

=
p̂k

qp
k/q

n + 1
+

θ̂k/g

1 + qn/qp
k

for θ̂k �
∫

R
θk p(θk|y) dθk,

(42)

where the Gaussian pdf multiplication rule2 was used in (40)
and where θ̂k denotes the posterior mean of θk.

For the posterior variance of zk, a similar approach gives

qz
k � var{zk|y} =

∫

R

(
zk − ẑk

)2
p(zk|y) dzk (43)

=
1

p(y)

∫

R

[ ∫

R
(zk − ẑk)

2N (gzk; θk, g
2qn)

×N (zk; p̂k, q
p
k) dzk

]
p(y|θk) dθk (44)

2According to the Gaussian multiplication rule, we have N (x;a,A)N
(x; b,B)=N (0;a−b,A+B)N (x; (A−1 +B−1)−1(A−1a+B−1b),
(A−1 +B−1)−1).

=

∫

R

⎡

⎣
∫

R
(zk − ẑk)

2N
⎛

⎝zk;

θk/g
qn + p̂k

qp
k

1
qn + 1

qp
k

,
1

1
qn + 1

qp
k

⎞

⎠ dzk

⎤

⎦

× p(θk|y) dθk. (45)

Using a change-of-variables from zk to z̃k � zk − ẑk, we get

qz
k =

∫

R

⎡

⎣
∫

R
z̃2kN

⎛

⎝z̃k;

θk/g
qn − ̂θk/g

qn

1
qn + 1

qp
k

,
1

1
qn + 1

qp
k

⎞

⎠ dz̃k

⎤

⎦

× p(θk|y) dθk (46)

=

∫

R

⎡

⎣
(
(θk − θ̂k)/g

1 + qn/qp
k

)2

+
qn

1 + qn/qp
k

⎤

⎦ p(θk|y) dθk

(47)

=
qn

1 + qn/qp
k

+
1

g2

(
1

1 + qn/qp
k

)2

×
∫

R
(θk − θ̂k)

2 p(θk|y) dθk
︸ ︷︷ ︸

� qθk = var{θk|y}

. (48)

The computation of ẑk and qz
k is still complicated by the form

of the posterior p(θk|y) implied by (36). To circumvent this
problem, we propose to apply a Gaussian approximation to the
sum in (36). Because {ñl}∀l �=k are mutually independent, the
mean and covariance of the sum in (36) are simply the sum of
the means and covariances (respectively) of the K − 1 terms
making up the sum. Recalling (37), this implies that

p

([
Re{y}
Im{y}

]∣∣∣∣θk

)
≈ N

([
Re{y}
Im{y}

]
;βk

[
cos(θk)

sin(θk)

]
+ μk,Σk

)

(49)

with

μk =
∑

l �=k

αle
−g2(τl+qp

l )/2

[
cos(gp̂l)

sin(gp̂l)

]
(50)

Σk =
1

2

∑

l �=k

β2
l

(
1− e−g

2qp
l

)

×
(
I − e−g

2qp
l

[
cos(2gp̂l) sin(2gp̂l)

sin(2gp̂l) − cos(2gp̂l)

])
. (51)

We note that (50) and (51) were obtained using

E
{
Re{vl}

}
= exp

(− g2qp
l /2
)
cos(gp̂l) (52)

E
{
Im{vl}

}
= exp

(− g2qp
l /2
)
sin(gp̂l) (53)

2E
{
Re{vl}2

}
= 1 + exp

(− g2qp
l

)
cos(2gp̂l) (54)

2E
{
Im{vl}2

}
= 1− exp

(− g2qp
l

)
cos(2gp̂l) (55)

2E
{
Re{vl} Im{vl}

}
= exp

(− g2qp
l

)
sin(2gp̂l), (56)
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which use the fact that, after letting qn → 0,

E{vl} =
∫

R
N (zl; p̂l, q

p
l ) exp(jgzl) dzl (57)

= exp
(
jgp̂l − g2qp

l /2
)
. (58)

Rewriting (49) as

p

(
β−1k

[
Re{y}
Im{y}

]∣∣∣∣θk

)

≈ N
([

cos(θk)

sin(θk)

]
;β−1k

[
Re{y}
Im{y}

]
− β−1k μk, β

−2
k Σk

)
,

(59)

the right side of (59) can be recognized as being proportional
to the generalized von Mises (GvM) density over θk ∈ [0, 2π)
from [19]. Under this GvM approximation, we have [19] that

p(y|θk) ∝ exp
(
κk cos(θk − ζk) + κk cos[2(θk − ζk)]

)
(60)

for parameters κk, κk > 0 and ζk, ζk ∈ [0, 2π) defined from
β−1k y, β−1k μk, and β−2k Σk. In particular,

κk cos(ζk) = − 1

1− ρ2k

(
ρkνk
σkσk

− νk
σ2
k

)
(61)

κk sin(ζk) = − 1

1− ρ2k

(
ρkνk
σkσk

− νk
σ2
k

)
(62)

κk cos(2ζk) = −
1

4(1− ρ2k)

(
1

σ2
k

− 1

σ2
k

)
(63)

κk sin(2ζk) =
ρk

2(1− ρ2k)σkσk
, (64)

where
[
νk

νk

]
� β−1k

([
Re{y}
Im{y}

]
− μk

)
(65)

[
σ2
k ρkσkσk

ρkσkσk σ2
k

]
� β−2k Σk. (66)

From (60) and the SHyGAMP pseudo-prior zk ∼ N (p̂k, q
p
k),

we see that the posterior on θk takes the form

p(θk|y) ∝ N
(
θk; gp̂k, g

2qp
k

)
p(y|θk) (67)

∝ exp

[
κk cos(θk − ζk) + κk cos[2(θk − ζk)]

− (θk − gp̂k)
2

2g2qp
k

]
. (68)

We now face the task of computing θ̂k = E{θk|y} and qθk =
var{θk|y} under (68). Since these quantities do not appear to
be computable in closed form, we settle for an approximation,
such as that based on the Laplace approximation [20] or nu-
merical integration. For the Laplace approximation, we would
first compute θ̂k,MAP � argmaxθk ln p(θk|y) and then approx-

imate θ̂k ≈ θ̂k,MAP and qθk ≈ − d2

dθk
2 ln p(θk|y)|θk=̂θk,MAP

. How-

ever, since computing argmaxθk ln p(θk|y) is complicated due

to the presence of multiple local maxima, we instead use
numerical integration. For this, we suggest a grid ofNptsNper + 1
uniformly-spaced points centered at gp̂k with width 2πNper,

where Nper =

⌈
Nstd
π

√
g2qp

k

⌉
. This choice of grid ensures that

the sampling points cover at least Nstd standard deviations of
the prior on θk. We used Nstd = 4 and Npts = 7 in the numerical
experiments in Section III.

Finally, after approximating θ̂k and qθk via numerical integra-
tion, we set ẑk = θ̂k/g and qz

k = qθk/g
2.

2) Inference of cn: Recall that lines 10-11 of Algorithm 1
support an arbitrary prior pc on cn. For the experiments in Sec-
tion III, we used the trivial non-informative prior pc(cn) ∝ 1,
after which lines 10-11 reduce to

qc
n = qr ∀n and ĉn = r̂n ∀n. (69)

E. Initialization

We recommend initializing CL-AMP with Ĉ = Ĉ0 and qp =
qp
0 , where Ĉ0 is drawn i.i.d.N (0, σ2) and whereqp

0 = σ21, with
σ2 from (21) (as described in Section II-A).

In some cases, running CL-AMP from R > 1 different ran-
dom initializations can help to avoid spurious solutions. Here,
CL-AMP is run from a different random initialization Ĉ0,r, for
r = 1, . . . , R, and then the quality of the recovered solution Ĉr

is evaluated by constructing the “estimated sketch” ŷr via

ŷmr =

K∑

k=1

αk exp(−g2mτk) exp(jgmaT
mĉkr) (70)

recalling (9) and (17), and then measuring its distance to the true
sketch y. The initialization index is then selected as

r∗ = argmin
r
‖y − ŷr‖, (71)

and the centroids saved as Ĉ = Ĉr∗ . In Section III, we used
R = 2 for all experiments.

F. Hyperparameter Tuning

The likelihood model py|z in (18) depends on the unknown hy-
perparameters α and τ . We propose to estimate these hyperpa-
rameters using a combination of expectation maximization (EM)
and SHyGAMP, as suggested in [14] and detailed—for the sim-
pler case of GAMP—in [21]. The idea is to run SHyGAMP using
an estimate of α and τ , update α and τ from the SHyGAMP
outputs, and repeat until convergence. For the first estimate, we
suggest to use αk = 1

K and τk = 0∀ k.
Extrapolating [21, eq. (23)] to the SHyGAMP case, the EM

update of (α, τ ) takes the form

(α̂, τ̂ ) = argmax
α≥0,αT1=1,τ>0

M∑

m=1

∫

RK

N (zm; ẑm,Qz
m)

× ln py|z(ym|zm;α, τ ) dzm, (72)

where ẑm and Qz
m = Diag{qz

m} are obtained by running
SHyGAMP to convergence under (α, τ ). To proceed, we model
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the Dirac delta in (18) using a circular Gaussian pdf with van-
ishingly small variance ε > 0, in which case

ln py|z(ym|zm;α, τ )

= −1

ε

∣∣∣∣∣ym −
K∑

k=1

αk exp

(
jgmzmk − g2mτk

2

)∣∣∣∣∣

2

+ const.

(73)

Plugging (73) back into (72), we see that the constant and the
1/ε-scaling play no role in the optimization, and so we can dis-
card them to obtain

(α̂, τ̂ ) = argmin
α≥0,αT1=1,τ>0

M∑

m=1

∫

RK

N (zm; ẑm,Qz
m)

×
∣∣∣∣∣ym −

K∑

k=1

αk exp

(
jgmzmk − g2mτk

2

)∣∣∣∣∣

2

dzm.

(74)

A closed-form solution to the optimization problem in (74)
seems out of reach. Also, the optimization objective is convex in
α for fixed τ , and convex in τ for fixedα, but not jointly convex
in [αT, τ T]. Although the optimization problem (74) is difficult
to solve, the solutions obtained by gradient projection (GP) [22]
seem to work well in practice. Also, GP is made practical by
closed-form gradient expressions. In particular, let

qmk � exp

(
−g2mτk

2

)
(75)

ρmk � exp

(
jgmẑmk − qz

mkg
2
m

2

)
, (76)

and recall that vmk = exp(jgmzmk) from (29) (although there
the m subscript was suppressed). Then the mth term of the sum
in the objective in (74) becomes

∫

RK

N (zm; ẑm,Qz
m)

∣∣∣∣∣ym −
K∑

k=1

αkqmkvmk

∣∣∣∣∣

2

dzm

= |ym|2 − 2

K∑

k=1

αkqmk Re
{
y∗mρmk

}

+

K∑

k=1

αkqmkρ
∗
mk

K∑

l �=k

αlqmlρml +

K∑

k=1

α2
kq

2
mk, (77)

where we used the fact that
∫

RN (zmk; ẑmk, q
z
mk)vmk dzmk =

ρmk. After reapplying the sum over m, we get

∂

∂αk

M∑

m=1

∫

RK

N (zm; ẑm,Qz
m)

∣∣∣∣∣ym −
K∑

k=1

αkqmkvmk

∣∣∣∣∣

2

dzm

= −2
M∑

m=1

qmkγmk (78)

∂

∂τk

M∑

m=1

∫

RK

N (zm; ẑm,Qz
m)

∣∣∣∣∣ym −
K∑

k=1

αkqmkvmk

∣∣∣∣∣

2

dzm

= αk

M∑

m=1

g2mqmkγmk (79)

Algorithm 2: CL-AMP with hyperparameter tuning and
multiple random initializations.

Require: Measurements y ∈ C
M , gains {gm}Mm=1, number

of initializations R ≥ 1, initializations {Ĉ0,r}Rr=1, qp
0 ,

α0, τ 0.
1: i = 0
2: repeat
3: if i = 0 then
4: for r = 1 : R do
5: Run CL-AMP with fixed (α0, τ 0) from

initialization (Ĉ0,r, q
p
0), yielding output Ĉ1,r,

Ẑr, and {qz
mr}Mm=1.

6: end for
7: Compute ŷmr �

∑K
k=1 α0k exp(−g2mτ0k)

exp(jgmẑmkr) ∀mr
8: Find r∗ = argminr ‖y − ŷr‖.
9: Set Ĉ1 = Ĉ1,r∗ , Ẑ = Ẑr∗ and {qz

m}Mm=1

= {qz
mr∗}Mm=1.

10: else
11: Run CL-AMP with fixed (αi, τ i) from

initialization (Ĉi, q
p
0), yielding output Ĉi+1,

Ẑ, and {qz
m}Mm=1.

12: end if
13: Compute (αi+1, τ i+1) via (74) using Ẑ and

{qz
m}Mm=1.

14: i← i+ 1.
15: until convergence

for

γmk � Re
{
y∗mρmk

}− αkqmk −
K∑

l �=k

αlqml Re
{
ρ∗mkρml

}
.

(80)

We found that complexity of hyperparameter tuning can be
substantially reduced, without much loss in accuracy, by using
only a subset of the terms in the sum in (74), as well as in the cor-
responding gradient expressions (78)–(79). For the experiments
in Section III, we used a fixed random subset of min(M, 20 K)
terms.

G. Algorithm Summary

Algorithm 2 summarizes the CL-AMP algorithm with R ran-
dom initializations and tuning of the hyperparameters (α, τ ).
Note that the random initializations {Ĉ0,r} are used only for
the first EM iteration, i.e., i = 0. Subsequent EM iterations (i.e.,
i ≥ 1) are initialized using the output Ĉi of the previous EM
iteration.

III. NUMERICAL EXPERIMENTS

In this section, we present the results of several exper-
iments used to test the performance of the CL-AMP, CL-
OMPR, and k-means++ algorithms. For k-means++, we used the
implementation provided by MATLAB and, for CL-OMPR,
we downloaded the MATLAB implementation from [23]. CL-
OMPR and CL-AMP used the same sketch y, whose frequency
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vectorsW were drawn using the method described in Section II-
A, with the scaling parameter σ2 set via (21). For CL-OMPR
and CL-AMP, the reported runtimes include the time of com-
puting the sketch, unless otherwise noted. All experiments were
run on a Dell PowerEdge C6320 two-socket server with Intel
Xeon E5-2680 v4 processors (14 cores, 2.40GHz) and 128GB
RAM.

A. Experiments With Synthetic Data

1) Performance vs. Sketch LengthM : In the first experiment,
we test each algorithm’s ability to minimize SSE on a set of
training data, i.e., to solve the problem (1). In addition, we test
how well the recovered centroids work in minimum-distance
classification.

The experiment was conducted as follows. Fixing the number
of classes at K = 10 and the data dimension at N = 100, ten
Monte Carlo trials were performed. In each trial, the true cen-
troids were randomly drawn3 as ck ∼ N (0N , 1.52K2/NIN ).
Then, using these centroids, a training dataset {xt}Tt=1 with
T = 107 samples was drawn from the GMM (5) with weights
αk = 1/K and covariances Φk = IN∀k. Additionally, a test
dataset {xt} of 106 samples was independently generated.

For centroid recovery, k-means++ was invoked on the train-
ing dataset, and both CL-AMP and CL-OMPR were invoked
after sketching the training data with M samples as in (2).
Sketch lengths M/KN ∈ {1, 2, 3, 5, 10, 20}were investigated.
CL-AMP used two random initializations, i.e., R = 2 as defined
in Algorithm 2.

For each algorithm, the SSE of its estimated centroids
{ĉk}Kk=1 was calculated using the training data {xt}Tt=1 via
(1). Additionally, the performance of the estimated centroids
in minimum-distance classification was evaluated as follows.
First, labels {jk}Kk=1 were assigned to the estimated centroids
by solving the linear assignment problem [24] without replace-
ment, given by

argmin
{j1,...,jK}={1,...,K}

K∑

k=1

‖ck − ĉjk‖22. (81)

Next, each test sample xt was classified using minimum-
distance classification, producing the estimated label

k̂t = argmin
k∈{1,...,K}

‖xt − ĉjk‖. (82)

The classification error rate (CER) was then calculated as the
proportion of estimated labels k̂t that do not equal the true label
kt from which the test sample xt was generated.4

Figures 1a, 1b, and 1c show the median SSE, CER, and run-
time (including sketching), respectively, for CL-AMP and CL-

3This data-generation model was chosen to match that from [5], and is in-
tended to have a relatively constant Bayes error rate w.r.t. N and K. For the
chosen parameters, the Bayes error rate is extremely small: 10−24. Thus, when
the centroids are accurately recovered, the classification error rate should be
essentially zero.

4Note that the true label kt was assigned when the test sample xt was gener-
ated. The true label kt does not necessarily indicate which of the true centroids
{ck} is closest to xt.

Fig. 1. Performance vs. sketch length M for K = 10 clusters, dimension
N = 100, and T = 107 training samples.

OMPR versus M/KN . Also shown is the median SSE, CER,
and runtime of k-means++, as a baseline, where k-means++ has
no dependence on M . Because a low runtime is meaningless if
the corresponding SSE is very high, the runtime was not shown
for CL-AMP and CL-OMPR whenever its SSE was more than
1.5 times that of k-means++. The error bars show the standard
deviation of the estimates.
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Figure 1a shows that, among the methods tested, CL-AMP
achieved the lowest SSE whenM ≥ 2KN . Also, CL-AMP sup-
ported the use of smaller sketch sizes M than CL-OMPR. In
particular, CL-AMP required M ≥ 2KN to yield a low SSE,
while CL-OMPR required M ≥ 10KN . This behavior mirrors
the behavior of AMP and OMP in the classical compressive sens-
ing context, where AMP usually requires fewer measurements
to accurately recover signals of a given sparsity (see, e.g., [21,
Figs. 8–10]). Also, with sufficiently large M , the SSE achieved
by CL-AMP and CL-OMPR was lower than that achieved by
k-means++.

Fig. 1b shows that CL-AMP achieved a low CER with sketch
size M ≥ KN , while again CL-OMPR required M ≥ 10KN .
Also, with sufficiently large M , CL-AMP and CL-OMPR
achieved near-zero CER, whereas k-means++ achieved an er-
ror rate of ≈ 0.2.

Finally, Fig. 1c shows that, for M/KN ∈ {10, 20}, k-
means++ ran slightly faster than CL-AMP, which ran
slightly faster than CL-OMPR. However, for M/KN ∈
{1, 2, 3, 5}, CL-AMP ran significantly faster than k-means++.
For M/KN ∈ {1, 2, 3, 5}, the runtime of CL-OMPR was not
shown because it generated centroids of significantly worse SSE
than those of k-means++.

2) Performance vs. Number of Classes K: In a second ex-
periment, we evaluated each algorithm’s performance versus the
number of classesK ∈ {5, 10, 15, 20, 25, 30, 40, 50} and sketch
sizes M/KN ∈ {2, 5, 10} for fixed data dimension N = 50.
The data was generated in exactly the same way as the previous
experiment, and the same performance metrics were evaluated.
Figs 2a, 2b, and 2c show the median SSE, CER, and runtime
(including sketching) versus K, for CL-AMP, CL-OMPR, and
k-means++.

Figure 2a shows that, as K increases, the SSE of k-means++
remained roughly constant, as expected based on the genera-
tion of the true centers ck. For K ≤ 20, CL-AMP yielded the
best SSE for all tested values of M . For K > 20, CL-AMP
yielded the best SSE with sketch sizes M ∈ {5KN, 10KN},
but performed poorly with M = 2KN . Meanwhile, CL-OMPR
performed reasonably well with sketch size M = 10KN , but
poorly with M ∈ {2KN, 5KN}.

Figure 2b shows similar trends. With sketch size M ∈
{5KN, 10KN}, CL-AMP had the lowest CER of any algo-
rithm for all tested values of K. With sketch size M = 10KN ,
CL-OMPR gave CER better than k-means++ for all tested K,
but with M ∈ {2KN, 5KN} CL-OMPR gave CER worse than
k-means++ for all tested K.

Finally, Fig. 2c shows that CL-AMP ran faster than CL-
OMPR at all tested K due to its ability to work with a smaller
sketch size M . For large K, Fig. 2c suggests that the runtime
of both CL-AMP and CL-OMPR grow as O(K2). The O(K2)
complexity scaling is expected for CL-AMP, since its complex-
ity is O(MNK) and we set M = O(K). But the O(K2) com-
plexity scaling is somewhat surprising for CL-OMPR, since
its complexity is O(MNK2) and we set M = 10NK. Also,
Fig. 2c shows that CL-AMP ran faster than k-means++ for most
values of K; for the smallest tested value of K (i.e., K = 5),
the median runtime of k-means++ was lower than CL-AMP
(but the error-bar suggests that the runtime of k-means++ was

Fig. 2. Performance vs. number of clusters K for dimension N = 50, sketch
size M ∈ {2, 5, 10} ×KN , and T = 107 training samples.

highly variable at this K). For the largest tested value of K, k-
means++ was again faster than CL-AMP, because the runtime
of k-means++ is expected to grow linearly with K, whereas that
of CL-AMP is expected to grow quadratically with K when
M/KN is fixed.

3) Performance vs. Dimension N : In a third experiment, we
evaluated each algorithm’s performance versus the dimensionN
(logarithmically spaced between 10 and 316) forK = 10 classes
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Fig. 3. Performance vs. dimension N for K = 10 classes, T = 107 samples,
and sketch size M ∈ {2, 5, 10} ×KN .

and sketch size M ∈ {2, 5, 10} ×KN . The data was generated
in exactly the same way as the previous two experiments, and the
same performance metrics were evaluated. Figs 3a, 3b, and 3c
show the median SSE/N , the CER, and the runtime (including
sketching) versus N , for CL-AMP, CL-OMPR, and k-means++.

Fig. 3a shows that, among all algorithms, CL-AMP
achieved the lowest SSE for all tested values of N and M .
Meanwhile, both CL-OMPR under sketch sizeM = 10KN and
k-means++ achieved reasonably good SSE, but CL-OMPR un-
der smaller sketches gave much higher SSE.

Fig. 3b shows that, among all algorithms, CL-AMP achieved
the lowest CER for all tested values of N and M . Meanwhile,
CL-OMPR under sketch size M = 10KN gave similar CER to
CL-AMP for most N , k-means++ gave significantly worse CER
compared to CL-AMP for all N , and CL-OMPR under sketch
size M = 5KN or 2KN gave even worse CER for all N .

Finally, Fig. 3c shows that, among all algorithms, CL-AMP
with sketch size M = 2KN ran the fastest for all tested values
of N . Meanwhile, CL-OMPR with sketch size M = 10KN ran
at a similar speed to CL-AMP with sketch size M = 10KN ,
for all N . The runtimes for CL-OMPR with smaller sketches
are not shown because it achieved significantly worse SSE than
k-means++. Fig. 3c suggests that, if N is increased beyond 316,
then eventually k-means++ will be faster than CL-AMP under
fixed M/KN .

4) Performance vs. Training Size T : In a final synthetic-data
experiment, we evaluated each algorithm’s performance versus
the number of training samples T (logarithmically spaced be-
tween 105 and 108) for K = 10 classes, dimension N = 50,
and sketch size M ∈ {2, 5, 10}KN . The data was generated in
exactly the same way as the previous three experiments, and the
same performance metrics were evaluated.

Figures 4a and 4b show the median SSE and CER ver-
sus T , for CL-AMP, CL-OMPR, and k-means++. From these
figures, we observe that the SSE and CER for each algo-
rithm (and sketch length M ) were approximately invariant to
T . CL-AMP (under any tested M ) yielded the lowest values
of SSE and CER. Both CL-OMPR under sketch size M =
10KN and k-means++ gave reasonably good SSE and CER,
but CL-OMPR under smaller sketches gave worse SSE and
CER.

Figs 4c and 4d show the median runtime with and without
sketching, respectively, for the algorithms under test. Fig. 4c
shows that, if sketching time is included in runtime, then all
runtimes increased linearly with training size T . However, for
large T , CL-AMP ran faster than k-means++ and CL-OMPR
(while also achieving lower SSE and CER). Meanwhile, Fig. 4d
shows that, if sketching time is not included in runtime, then
the runtimes of both CL-AMP and CL-OMPR were relatively
invariant to T . Also, Figs 4c and 4d together show that, for
T > 106, the sketching time was the dominant contributer to
the overall runtime.

B. Spectral Clustering of MNIST

Next we evaluated the algorithms on the task of spectral clus-
tering [25] of the MNIST dataset. This task was previously
investigated for CL-OMPR and k-means++ in [6], and we used
the same data preprocessing steps: extract SIFT descriptors [26]
of each image, compute theK-nearest-neighbors adjacency ma-
trix (for K = 10) using FLANN [27], and compute the 10
principal eigenvectors of the associated normalized Laplacian
matrix (since we know K = 10), yielding features of dimen-
sion N = 10. We applied this process to the original MNIST
dataset, which includes T = 7× 104 samples, as well as an aug-
mented one with T = 3× 105 samples constructed as described
in [6].

The experiment was conducted as follows. In each of 10 tri-
als, we randomly partitioned each sub-dataset into equally-sized



4566 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 17, SEPTEMBER 1, 2019

Fig. 4. Performance vs. training size T for K = 10 classes, dimension N = 50, and sketch size M ∈ {2, 5, 10} ×KN .

training and testing portions. Then, we invoked CL-AMP, CL-
OMPR, and k-means++ on the training portion of the dataset,
using sketch sizesM ∈ {1, 2, 3, 5, 10} ×KN for CL-AMP and
CL-OMPR. The algorithm parameters were the same as in Sec-
tion III-A. Finally, the estimated centroids produced by each
algorithm were evaluated using the same two metrics as in Sec-
tion III-A: SSE on the training data, and classification error rate
(CER) when the centroids were used for minimum-distance clas-
sification of the test data samples.

The median SSE, CER, and runtime, versus sketch length M ,
are shown for CL-AMP and CL-OMPR in Fig. 5 for the T =
7× 104-sample MNIST sub-dataset. As before, k-means++ is
shown, as a baseline, although it does not use the sketch and thus
is performance is invariant to M . From this figure, we observe
that CL-AMP and CL-OMPR gave respectable results for sketch
lengths M ≥ 2KN , and SSE nearly identical to kmeans++
for M ≥ 5KN . For M ≥ 2KN , however, CL-AMP yielded
significantly lower CER than both CL-OMPR and k-means++,
at the cost of a slower runtime. We attribute CL-AMP’s slower
runtime to its use of many iterations i in Algorithm 2 for hyper-
parameter tuning.

C. Examination of Computational Complexity

To better understand the computational bottlenecks of the pro-
posed approach, Fig. 6 shows—for several problem dimensions

and data types—the runtime contributions of the “sketch,” i.e.,
equation (2); the “tuning” steps, i.e., line 2 of Algorithm 2; the
“estimation” steps, i.e., lines 4-5 of Algorithm 1; and all other
lines from Algorithm 1, which we refer to as the “linear” steps,
since their complexity is dominated by the matrix multiplica-
tions in lines 3 and 9 of Algorithm 1.

Fig. 6 suggests that CL-AMP’s estimation steps require the
most computation, followed by its tuning steps, and finally its
linear steps. These results motivate additional work to reduce
the computational complexity of CL-AMP’s estimation steps.
The cost of sketching itself depends on the number of training
samples, T , and the degree to which the sketching operation
is distributed over multiple processors. When T becomes large
enough that the sketching time becomes computationally sig-
nificant (as in Fig. 6b), the simplest remedy is to parallelize the
sketch.

D. Frequency Estimation

Our final experiment concerns multi-dimensional frequency
estimation. Consider a sum-of-sinusoids signal of the form

y(t) =
K∑

k=1

αk exp(jt
Tck), (83)
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Fig. 5. Performance vs. M for the T = 70000-sample spectral MNIST
dataset, with K = 10 clusters and dimension N = 10.

where ck ∈ RN is the frequency of the kth sinusoid, αk > 0
is the amplitude of the kth sinusoid, and t ∈ RN denotes time.
Given measurements of the signal y(t) at a collection of random
times t ∈ {tm}Mm=1, i.e.,

ym = y(tm) for m = 1, . . . ,M, (84)

Fig. 6. Proportion of total runtime of the different sections of the CL-AMP
algorithm applied to different datasets.

we seek to recover the frequencies {ck}Kk=1. We are particularly
interested in the case where the frequencies {ck} are closely
spaced, i.e., the “super-resolution” problem.

Note that the model in (83) matches that in (13) with gmam =
tm ∀m and Φk = 0∀k, so that we can apply CL-AMP to this
frequency estimation problem. The model in (83) also matches
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Fig. 7. Frequency estimation for K = 4 and N = 2 with random time sam-
ples.

(4) with wm = tm ∀m, and so we can also apply CL-OMPR.
But we cannot apply k-means++.

For frequency pairs {c1, c2} with ‖c1 − c2‖2 ≥ ε, [28]
claims that, with {wm} drawn randomly from an appropri-
ate distribution, one can resolve the frequencies with M ≥
O(ln(1/ε)) measurements. However, choosing wm uniformly
spaced on a grid would require M ≥ O(1/ε) measurements.
Thus, for a final experiment, similar to those performed in [28],
we did the following. For a particular N and K (where K is
even for simplicity), we generated K/2 pairs of frequencies
{c2k−1, c2k}, where ‖c2k−1 − c2k‖2 = ε for k = 1, . . . ,K/2.
Then, for a particular realization of {ck}Kk=1 and {wm}Mm=1,
CL-AMP and CL-OMPR were invoked to estimate {ĉk}Kk=1.
Recovery was declared successful if

max
k
‖cjk − ĉk‖2 < ε/2, (85)

where {jk}Kk=1 solves the linear assignment problem (81).
For our experiment, we tested K = 4 frequency components

of dimensionN = 2 and variedM from 3KN to 100KN while
also varying ε from 10−1 to 10−3. For each combination, 10 trials

Fig. 8. Frequency estimation for K = 4 and N = 2 with uniformly spaced
time samples.

were performed. The empirical probability of successful recov-
ery is shown in Figs 7–8. In Fig. 7,am were drawn uniformly on
the unit sphere and gm = |g′m| with g′m ∼ N (0, 4ε2 log210(ε)),
while in Fig. 8, wm are uniformly spaced on a N -dimensional
hyper-grid with per-dimension spacing π/2. Superimposed on
the figures are curves showing M/KN = 0.1/ε and M/KN =
ln(1/ε). From the figures, we see that CL-AMP had a higher
empirical probability of recovery than CL-OMPR, especially
for small ε. We also see that the empirical phase transition of
CL-AMP is close to the ln(1/ε) curve with random frequency
samples (i.e., Fig. 7a) and the 0.1/ε curve with uniform fre-
quency samples (i.e., Fig. 8a).

IV. CONCLUSION

In sketched clustering, the original dataset is sketched down
to a relatively short vector, from which the centroids are
extracted. For the sketch proposed by [5], [6], we proposed
the CL-AMP centroid-extraction method. Our method assumes
that the original data follows a GMM, and exploits the recently
proposed simplified hybrid generalized approximate message
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passing (SHyGAMP) algorithm [14]. Numerical experiments
suggest that CL-AMP exhibits better sample complexity (i.e.,
extracts accurate clusters with fewer compressed samples) than
the state-of-the-art sketched-clustering algorithm, CL-OMPR,
from [5], [6]. In many cases, CL-AMP also exhibits better
computational complexity than CL-OMPR. Furthermore,
for datasets with many samples, CL-AMP exhibits lower
computational complexity than the widely used k-means++
algorithm. As future work, it would be worthwhile to investigate
ways to reduce the computational complexity of CL-AMP’s
estimation steps, and to analyze the theoretical behavior of
CL-AMP using a state-evolution approach. Finally, as new
variations of the sketch (2) are proposed (e.g., [29], [30]) it
would be interesting to modify CL-AMP accordingly.
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