Learning Dynamical Systems with Efficient Kernel Methods

Journées GAIA

Antoine Chatalic

24 novembre 2023

Large-scale machine learning with kernel methods

Goal in ML: learn (from data) a model that generalizes to new data samples. Data $(x_i,y_i)_{1\leq i\leq n}$ with n large \leadsto good accuracy but slow algorithms;

Large-scale machine learning with kernel methods

Goal in ML: learn (from data) a model that generalizes to new data samples. Data $(x_i, y_i)_{1 \le i \le n}$ with n large \leadsto good accuracy but slow algorithms;

My goal: compress (time/space) learning algorithms using randomized approximations.

Focus: kernel methods.

(César - Renault VL 06 - Photo: marcovdz)

Why compressing?

Example: kernel ridge regression (KRR)

$$f_{\text{KRR}} := \underset{f \in \mathcal{H}}{\arg\min} \, \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

4

Why compressing?

Example: kernel ridge regression (KRR)

$$f_{\mathrm{KRR}} := \mathop{\arg\min}_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$
 Space of functions $f(x) = \langle u, \phi(x) \rangle$ RKHS with kernel $\kappa(x,y) = \langle \phi(x), \phi(y) \rangle$

4

Why compressing?

Example: kernel ridge regression (KRR)

$$f_{\mathrm{KRR}} := \mathop{\arg\min}_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$
 Space of functions $f(x) = \langle u, \phi(x) \rangle$ RKHS with kernel $\kappa(x,y) = \langle \phi(x), \phi(y) \rangle$
$$= \sum_{i=1}^n w_i \phi(x_i) \quad \text{with} \quad w := (K_n + \lambda nI)^{-1} y$$

Space:
$$O(n^2)$$
, Time: $O(n^3)$. $(n=10^6 \ {\rm samples}, \ 64 \ {\rm bit} \ {\rm precision} \leadsto 8000 \ {\rm GB} \ {\rm of} \ {\rm RAM})$

4

Sketching for ML: compression with no tradeoff

Important to keep in mind the **end goal** when compressing. (Think of signal compression!)

Sketching for ML: compression with no tradeoff

Important to keep in mind the **end goal** when compressing. (Think of signal compression!)

The goal in statistical ML is to **generalize to new data**. For a sketched algorithm:

One can often compress without any tradeoff.

Did you say "sketching"?

Did you say "sketching"?

Did you say n"sketching"? K_n Features Manipulate data via $\phi(x_1),...,\phi(x_n)$ the kernel matrix K_n (Infinite dimension!) Dimensionality reduction $\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots$ $X = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 & \cdots & \mathbf{x}_n \end{bmatrix}$

n large

Learning Dynamical Systems

(Joint work with G. Meanti, V. Kostić, P. Novelli, M. Pontil, L. Rosasco)

Dynamical Systems

Discretized dynamical system with state x:

$$x_{t+1} = F(x_t)$$

Typically non-linear, stochastic.

Goals:

- forecasting;
- estimate the system (interpretability);
- \blacksquare control (then $x_{t+1} = F(x_t, u_t)$).

Linear Approximations to Dynamical Systems

Linear systems can be described by their spectral decomposition \leadsto efficient algorithms for estimation, prediction and control.

Problem: most encountered dynamical systems are non-linear.

Approach: choose a **non-linear** feature ϕ such that the dynamics of the lifted states $\phi(x_t)$ is approximately linear:

$$\phi(x_{t+1}) \approx A\phi(x_t)$$

Learning dynamical systems

Koopman operator:

$$(\mathcal{K}\varphi)(x) = \mathbf{E}[\varphi(F(x))], \quad \forall \varphi \in \mathcal{F}$$

- lacksquare advances a measurement function (in \mathcal{F}) of the state forward in time;
- defined over an infinite-dimensional space of observable functions;
- linear operator.

Goal: approximate \mathcal{K} ...

- for prediction;
- to compute an eigenfunctions/values \leadsto this usually provides an interpretable decomposition of the dynamics (especially the principal modes).

Just another regression problem

Formalization: auto-regression problem using training pairs $(x_t,y_t=x_{t+1})$ and a feature map ϕ :

$$\hat{\mathcal{R}}(A) := \frac{1}{n} \sum_{i=1}^{n} \left\| \phi(x_{i+1}) - A\phi(x_{i}) \right\|^{2}$$

Intuitively, $A:\mathcal{H}\to\mathcal{H}$ approximates the restriction of \mathcal{K} to the chosen RKHS $\mathcal{H}.$

Multiple regularizations possible. Minimizers depend on the covariance & cross-covariance.

Just another regression problem

Formalization: auto-regression problem using training pairs $(x_t,y_t=x_{t+1})$ and a feature map ϕ :

$$\hat{\mathcal{R}}(A) := \frac{1}{n} \sum_{i=1}^{n} \left\| \phi(x_{i+1}) - A\phi(x_i) \right\|^2$$

Intuitively, $A:\mathcal{H}\to\mathcal{H}$ approximates the restriction of \mathcal{K} to the chosen RKHS \mathcal{H} .

Multiple regularizations possible. Minimizers depend on the covariance & cross-covariance.

Cost of minimizing $\hat{\mathcal{R}}$: $O(n^2)$ space / $\Theta(n^3)$ time.

The Nyström approximation

We "compress" using a subsample $\tilde{x}_1,...,\tilde{x}_m$ of the data.

Multiple interpretations:

■ Look for a minimizer of $\hat{\mathcal{R}}$ defined on \mathcal{H}_m rather than \mathcal{H} , where

$$\mathcal{H}_m := \operatorname{span}(\phi(\tilde{x}_1),...,\phi(\tilde{x}_m)).$$

lacksquare Approximate the n imes n kernel matrix by a rank-m approximation.

$$\kappa(x,y) \approx \langle P_m \phi(x), P_m \phi(y) \rangle, \quad P_m \text{ orthogonal projector on } \mathcal{H}_m.$$

Intuition:

- Best rank-m approximation is costly (eigendecomposition).
- Few samples are enough to estimate the covariance principal subspaces.

Multiple estimators

We provide compressed variants for...

- **ridge** regression (KRR): min $\hat{\mathcal{R}}$ with Tikhonov regularization;
- **principal component** regression (PCR): least-squares after projection on top eigenfunctions of *C*;
- reduced rank regression (RRR): min $\widehat{\mathcal{R}}$ under a hard rank constraint (more robust for eigenvalues than PCR [Kostic, 2023]).

Estimators computable in $\Theta(m^3+m^2n)=\Theta(m^2n)$ time. One can choose m to get optimal rates in $O(n^2)$ time.

Learning rates

We consider a time-homogeneous Markov process with invariant density π .

Let ρ denote the distribution of (X_t, X_{t+1}) .

We consider rates in operator norm, for i.i.d. data $(x_i,y_i)_{1\leq i\leq n}.$

Let $C = \mathbf{E}_{\pi} \phi(x) \otimes \phi(x)$, and $\beta \in (0,1]$ such that $\lambda_i(C) \leq ci^{-1/\beta}$.

Contribution: We reach the optimal learning rates $O(n^{-1/(2(1+\beta))})$while using a sketch size ranging from $m \approx \log(n)$ to $m \approx \sqrt{n}$.

[Meanti et al., 2023. Estimating Koopman Operators with Sketching to Provably Learn Large Scale Dynamical Systems]

Experimental results (toy dataset)

Lorenz '63 system (toy example). Setting: $m=250,\ n$ increasing. Much faster estimators to reach a similar accuracy.

Experimental results (large-scale dataset)

Application in molecular dynamics.

- system = molecule structure (position of atoms, encoded by pairwise distances)
- the recovered top two eigenfunctions coincide with angles ψ, ϕ (known to capture relevant long-term dynamics).

Setting: $n \approx 450\,000$, $m = 10\,000$, RRR estimator. (Right = PCCA+ trained on the eigenfunctions).

Conclusion and perspectives

Challenges:

- Our rates are for i.i.d. data. Not realistic in practice. (First step: use results for mixing processes.)
- Analysis with refined hypotheses: source condition, misspecified setting...

Perspectives

Generalization for control!

$$x_{t+1} = F(x_t, u_t)$$

