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Large-scale machine learning with kernel methods

Goal in ML: learn (from data) a model that generalizes to new data samples.
Data (;,9;)1<j<, With n large ~» good accuracy but slow algorithms;
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Goal in ML: learn (from data) a model that generalizes to new data samples.
Data (;,9;)1<j<, With n large ~» good accuracy but slow algorithms;

My goal: compress (time/space) learning
algorithms using randomized approximations.

Focus: kernel methods.

(César — Renault VL 06 — Photo: marcovdz)
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Why compressing?

Example: kernel ridge regression (KRR)

n

fxrr = argmin - » (f(xz;) —v,)* + A5
Space of functions f(z) = (u, ¢(z)) (\_/feﬂ i=1
RKHS with kernel k(z, y) = (¢(x), ¢ n
with kernel r(z,y) = (¢(z), ¢(y)) _ sz¢(xz> with w:= (K, + )\nI)fly
i=1

Space: O(n?), Time: O(n?).
(n = 10° samples, 64 bit precision ~» 8000 GB of RAM)
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Sketching for ML: compression with no tradeoff

Important to keep in mind the end goal when compressing.
(Think of signal compression!)

The goal in statistical ML is to generalize to new data. For a sketched algorithm:

Generalization error = Bias + Epistemic error + Approximation error

Decreases with n Can be tuned!

One can often compress without any tradeoff.
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n > Non-parametric kernel methods
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Learning Dynamical Systems

(Joint work with G. Meanti, V. Kosti¢, P. Novelli, M. Pontil, L. Rosasco)



Dynamical Systems

Discretized dynamical system with state x:
Ty = F(zy)

Typically non-linear, stochastic.

Goals:
m forecasting;
m estimate the system (interpretability);

m control (then z,,; = F(z,,u,)).

Lorenz 63, n=10000




Linear Approximations to Dynamical Systems

Linear systems can be described by their spectral decomposition
~ efficient algorithms for estimation, prediction and control.

Problem: most encountered dynamical systems are non-linear.

Approach: choose a non-linear feature ¢ such that the dynamics of the lifted states
¢(z,) is approximately linear:

P(11) = Ag(x,)



Learning dynamical systems

Koopman operator:
(Ko)(z) = Elp(F(z))], Veed

m advances a measurement function (in &) of the state forward in time;
m defined over an infinite-dimensional space of observable functions;

m linear operator.

Goal: approximate X ...
m for prediction;

m to compute an eigenfunctions/values ~~ this usually provides an interpretable
decomposition of the dynamics (especially the principal modes).



Just another regression problem

Formalization: auto-regression problem using training pairs (x;,y, = x,,,) and a
feature map ¢:

= % Z 7,+1 Aﬁb(l’i)HQ

Intuitively, A : H — JH approximates the restriction of X to the chosen RKHS 7.

Multiple regularizations possible. Minimizers depend on the covariance & cross-covariance.
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Just another regression problem

Formalization: auto-regression problem using training pairs (x;,y, = x,,,) and a
feature map ¢:

= % Z 7,+1 Aﬁb(l’i)HQ

Intuitively, A : H — JH approximates the restriction of X to the chosen RKHS 7.
Multiple regularizations possible. Minimizers depend on the covariance & cross-covariance.

Cost of minimizing R: 0(77,2) space / @(77,3) time.
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The Nystrom approximation

We "compress” using a subsample 74, ..., Z,, of the data.

Multiple interpretations:

m Look for a minimizer of R defined on JC,, rather than J(, where

H,, = span(p(Zy), ..., 6(Z,,))-

m Approximate the n x n kernel matrix by a rank-m approximation.

k(z,y) ~ (P, ¢(x), P,o(y)), P, orthogonal projector on .

Intuition:
m Best rank-m approximation is costly (eigendecomposition).

m Few samples are enough to estimate the covariance principal subspaces.
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Multiple estimators

We provide compressed variants for...
m ridge regression (KRR): min & with Tikhonov regularization;
m principal component regression (PCR): least-squares after projection on top
eigenfunctions of C;

m reduced rank regression (RRR): min & under a hard rank constraint
(more robust for eigenvalues than PCR [Kostic, 2023] ).

Estimators computable in ©(m?3 +m?n) = ©(m?n) time.
One can choose m to get optimal rates in O(n?) time.
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Learning rates

We consider a time-homogeneous Markov process with invariant density .
Let p denote the distribution of (X, X, ).
We consider rates in operator norm, for i.i.d. data (z;,%;)1<;<p-

Let C' = E_¢(x) ® ¢(x), and S e (0,1] such that \,(C) < ¢i~ /8.

Contribution: We reach the optimal learning rates O(n~1/(2(1+8)) |

..while using a sketch size ranging from m ~ log(n) to m ~ /n.

[Meanti et al., 2023. Estimating Koopman Operators with Sketching to Provably Learn Large Scale Dynamical Systems)
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Experimental results (toy dataset)

e FulRRR ~ —e- NysRRR ~ —e— FulPCR  —<- NysPCR
B 1074

101 4

Time

102 10° 10!
Number of samples

Number of samples

Lorenz '63 system (toy example). Setting:
Much faster estimators to reach a similar accuracy.

: m = 250, n increasing.
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Experimental results (large-scale dataset)

Application in molecular dynamics.
m system = molecule structure (position of atoms, encoded by pairwise distances)

m the recovered top two eigenfunctions coincide with angles v, ¢ (known to capture
relevant long-term dynamics).

a A = 0.924 Ao = 0.236 b )
" ~ " :
g i o
SEEICENE SN
3
[
g | e — . 0 =

- 0 T -7 0 g - 0 T
(0 (0 ¢

Setting: n &~ 450000, m = 10000, RRR estimator. (Right = PCCA+ trained on the eigenfunctions).
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Conclusion and perspectives

Challenges:

m Our rates are for i.i.d. data. Not realistic in practice.
(First step: use results for mixing processes.)

m Analysis with refined hypotheses:
source condition, misspecified setting...

Perspectives

m Generalization for control!
Ty = F(xy,uy)
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