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Large-scale machine learning with kernel methods

Goal in ML: learn (from data) a model that generalizes to new data samples.
Data (𝑥𝑖, 𝑦𝑖)1≤𝑖≤𝑛 with 𝑛 large  good accuracy but slow algorithms;

My goal: compress (time/space) learning
algorithms using randomized approximations.

Focus: kernel methods.

(César − Renault VL 06 − Photo: marcovdz)
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Why compressing?

Example: kernel ridge regression (KRR)

  𝑓KRR ∶= arg min
𝑓∊ℋ

1
𝑛

𝑛
∑
𝑖=1

(𝑓(𝑥𝑖) − 𝑦𝑖)2 + 𝜆‖𝑓‖2
ℋ

=
𝑛

∑
𝑖=1

𝑤𝑖𝜙(𝑥𝑖) with 𝑤 ∶= (𝐾𝑛 + 𝜆𝑛𝐼)−1𝑦
Space of functions 𝑓(𝑥) = ⟨𝑢, 𝜙(𝑥)⟩
RKHS with kernel 𝜅(𝑥, 𝑦) = ⟨𝜙(𝑥), 𝜙(𝑦)⟩

Space: 𝑂(𝑛2), Time: 𝑂(𝑛3).
(𝑛 = 106 samples, 64 bit precision  8000 GB of RAM)
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Sketching for ML: compression with no tradeoff

Important to keep in mind the end goal when compressing.
(Think of signal compression!)

The goal in statistical ML is to generalize to new data. For a sketched algorithm:

Generalization error = Bias + Epistemic error⏟⏟⏟⏟⏟⏟⏟
Decreases with 𝑛

+ Approximation error⏟⏟⏟⏟⏟⏟⏟⏟⏟
Can be tuned!

One can often compress without any tradeoff.
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Did you say
“sketching”?

𝐱1 𝐱2 𝐱3 𝐱𝑛⋯𝑋 =

𝑛 large

𝐱1 𝐱2 𝐱3 𝐱𝑛⋯ 𝐱̃1 𝐱̃2 𝐱̃3 𝐱̃𝑛⋯ 𝑑′ < 𝑑

Features
𝜙(𝑥1), …, 𝜙(𝑥𝑛)
(Infinite dimension!) 𝜑

𝑚
(𝐱

1
)

𝜑
𝑚

(𝐱
2
)

𝜑
𝑚

(𝐱
3
)

𝜑
𝑚

(𝐱
𝑛

)

⋯ ̂𝑠
Mean

𝐾𝑛

𝐾𝑖𝑗 = 𝜅(𝐱𝑖, 𝐱𝑗)

= ⟨𝜙(𝐱𝑖), 𝜙(𝐱𝑗)⟩

𝑛

𝑛

𝜑𝑚(𝐱1)
𝜑𝑚(𝐱2)
𝜑𝑚(𝐱3)

𝜑𝑚(𝐱𝑛)

⋯

𝜑
𝑚

(𝐱
1
)

𝜑
𝑚

(𝐱
2
)

𝜑
𝑚

(𝐱
3
)

𝜑
𝑚

(𝐱
𝑛

)

⋯

𝜅(𝑥, 𝑦) ≈ ⟨𝜑𝑚(𝑥), 𝜑𝑚(𝑦)⟩
𝜑𝑚 : ℝ𝑑 → ℝ𝑚 randomized

▷ Dimensionality reduction
▷ Coresets, Subsampling

Manipulate data via
the kernel matrix 𝐾𝑛

▷ Moments-based methods

Approximation

(low rank)

▷ Non-parametric kernel methods
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Learning Dynamical Systems

(Joint work with G. Meanti, V. Kostić, P. Novelli, M. Pontil, L. Rosasco)



Dynamical Systems

Discretized dynamical system with state 𝑥:

𝑥𝑡+1 = 𝐹(𝑥𝑡)

Typically non-linear, stochastic.

Goals:
forecasting;
estimate the system (interpretability);
control (then 𝑥𝑡+1 = 𝐹(𝑥𝑡, 𝑢𝑡)).
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Linear Approximations to Dynamical Systems

Linear systems can be described by their spectral decomposition
 efficient algorithms for estimation, prediction and control.

Problem: most encountered dynamical systems are non-linear.

Approach: choose a non-linear feature 𝜙 such that the dynamics of the lifted states
𝜙(𝑥𝑡) is approximately linear:

𝜙(𝑥𝑡+1) ≈ 𝐴𝜙(𝑥𝑡)

8



Learning dynamical systems

Koopman operator:

(𝒦𝜑)(𝑥) = E[𝜑(𝐹(𝑥))], ∀𝜑 ∊ ℱ

advances a measurement function (in ℱ) of the state forward in time;
defined over an infinite-dimensional space of observable functions;
linear operator.

Goal: approximate 𝒦…
for prediction;
to compute an eigenfunctions/values  this usually provides an interpretable
decomposition of the dynamics (especially the principal modes).
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Just another regression problem

Formalization: auto-regression problem using training pairs (𝑥𝑡, 𝑦𝑡 = 𝑥𝑡+1) and a
feature map 𝜙:

ℛ̂(𝐴) ∶= 1
𝑛

𝑛
∑
𝑖=1

∥𝜙(𝑥𝑖+1) − 𝐴𝜙(𝑥𝑖)∥
2

Intuitively, 𝐴 ∶ ℋ → ℋ approximates the restriction of 𝒦 to the chosen RKHS ℋ.

Multiple regularizations possible. Minimizers depend on the covariance & cross-covariance.

Cost of minimizing ℛ̂: 𝑂(𝑛2) space / Θ(𝑛3) time.
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The Nyström approximation

We ”compress” using a subsample ̃𝑥1, …, ̃𝑥𝑚 of the data.

Multiple interpretations:
Look for a minimizer of ℛ̂ defined on ℋ𝑚 rather than ℋ, where

ℋ𝑚 ∶= span(𝜙( ̃𝑥1), …, 𝜙( ̃𝑥𝑚)).

Approximate the 𝑛 × 𝑛 kernel matrix by a rank-𝑚 approximation.

𝜅(𝑥, 𝑦) ≈ ⟨𝑃𝑚𝜙(𝑥), 𝑃𝑚𝜙(𝑦)⟩, 𝑃𝑚 orthogonal projector on ℋ𝑚.

Intuition:
Best rank-𝑚 approximation is costly (eigendecomposition).
Few samples are enough to estimate the covariance principal subspaces.
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Multiple estimators

We provide compressed variants for…
ridge regression (KRR): min ℛ̂ with Tikhonov regularization;
principal component regression (PCR): least-squares after projection on top
eigenfunctions of 𝐶;
reduced rank regression (RRR): min ℛ̂ under a hard rank constraint
(more robust for eigenvalues than PCR [Kostic, 2023] ).

Estimators computable in Θ(𝑚3 + 𝑚2𝑛) = Θ(𝑚2𝑛) time.
One can choose 𝑚 to get optimal rates in 𝑂(𝑛2) time.
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Learning rates

We consider a time-homogeneous Markov process with invariant density 𝜋.
Let 𝜌 denote the distribution of (𝑋𝑡, 𝑋𝑡+1).
We consider rates in operator norm, for i.i.d. data (𝑥𝑖, 𝑦𝑖)1≤𝑖≤𝑛.

Let 𝐶 = E𝜋𝜙(𝑥) ⊗ 𝜙(𝑥), and 𝛽 ∊ (0, 1] such that 𝜆𝑖(𝐶) ≤ 𝑐𝑖−1/𝛽.

Contribution: We reach the optimal learning rates 𝑂(𝑛−1/(2(1+𝛽)))…
…while using a sketch size ranging from 𝑚 ≈ log(𝑛) to 𝑚 ≈

√
𝑛.

[Meanti et al., 2023. Estimating Koopman Operators with Sketching to Provably Learn Large Scale Dynamical Systems]
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Experimental results (toy dataset)

Lorenz ’63 system (toy example). Setting: 𝑚 = 250, 𝑛 increasing.
Much faster estimators to reach a similar accuracy.
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Experimental results (large-scale dataset)

Application in molecular dynamics.
system = molecule structure (position of atoms, encoded by pairwise distances)
the recovered top two eigenfunctions coincide with angles 𝜓, 𝜙 (known to capture
relevant long-term dynamics).

Setting: 𝑛 ≈ 450 000, 𝑚 = 10 000, RRR estimator. (Right = PCCA+ trained on the eigenfunctions).
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Conclusion and perspectives

Challenges:
Our rates are for i.i.d. data. Not realistic in practice.
(First step: use results for mixing processes.)
Analysis with refined hypotheses:
source condition, misspecified setting…

Perspectives
Generalization for control!

𝑥𝑡+1 = 𝐹(𝑥𝑡, 𝑢𝑡)

(Image: Real Estate Japan)
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